
Game development in
Rust with Macroquad

Olle Wreede

1

Game development in Rust with Macroquad
Copyright © 2025 by Olle Wreede

Licensed under CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/
(https://creativecommons.org/licenses/by-sa/4.0/)

This license enables reusers to distribute, remix, adapt, and build upon the material in any medium
or format, so long as attribution is given to the creator. The license allows for commercial use. If you

remix, adapt, or build upon the material, you must license the modified material under identical
terms. CC BY-SA includes the following elements:

BY: credit must be given to the creator.
SA: Adaptations must be shared under the same terms.

First print edition February 2025

https://mq.agical.se (https://mq.agical.se)

Proofreading and consistency check: Kathrin Hagmaier

Additional content by Peter Strömberg

Cover design by Niklas Elmgren

Ferris the Teacher (https://www.behance.net/gallery/89117181/Ferris-the-professional) image by
Esther Arzola (https://www.behance.net/estherarzola) is licensed under CC BY 4.0

(https://creativecommons.org/licenses/by/4.0/deed.en).

ISBN: 978-91-976896-0-1

2

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://mq.agical.se/
https://mq.agical.se/
https://www.behance.net/gallery/89117181/Ferris-the-professional
https://www.behance.net/gallery/89117181/Ferris-the-professional
https://www.behance.net/estherarzola
https://www.behance.net/estherarzola
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Acknowledgments
Thanks to mom and dad, and the rest of my family. I want to give an extra special thanks to the
following people:

Niklas Elmgren for designing the cover
Kathrin Hagmaier for help with proofreading and consistency check
Peter Strömberg for user testing and additional content
The Art of Code for the starfield shader
Esther Arzola for the beautiful image of Ferris with a teacher’s hat
Fedor Logachev for developing Macroquad
Everyone who designed game assets and placed them in the public domain

And of course to everybody who has followed the guide, has cheered me on or given feedback and
suggestions.

3

Table of contents
Copyright
Acknowledgments
Table of contents
Game development in Rust with Macroquad

Your first Macroquad app 8
Fly away 14
Smooth movement 18
Falling squares 21
Collision 26
Bullet hell 31
Points 36
Game state 40
Starfield shader 47
Particle explosions 53
Graphics 58

Spaceship and bullets
Graphical explosions
Animated enemies

Music and sound effects 74
Graphical menu 77
Resources 83

Resources and errors
Coroutines and Storage

Release your game 95
Build for desktop
Build for the web
Build for Android
Build for iOS

The end 108

Full source code
Credits Glossary

4

file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/copyright.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/acknowledgments.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/SUMMARY.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/README.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch1-first-program.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch2-move-a-circle.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch3-smooth-movement.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch4-falling-squares.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch5-collision.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch6-shooting.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch7-points-system.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch8-game-state.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch9-starfield-shader.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch10-particle-explosions.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch11-graphics.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch11-1-spaceship-and-bullets.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch11-2-explosions.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch11-3-enemies.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch12-audio.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch13-menu-ui.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch14-resources.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch14-1-resources-and-errors.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch14-2-coroutines-and-storage.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-game.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-desktop.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-web.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-android.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-ios.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/wrapup.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/full-source.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/credits.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/glossary.html

Game development in Rust with Macroquad

This guide is written by Olle Wreede at Agical (https://www.agical.se/).

Olle Wreede is a senior software developer working at Agical where he helps customers build better
software. He has worked in the software industry for two and a half decades.

Agical helps their customers deliver software earlier. By focusing on helping everyone involved,
getting better at working together and improving their technical skills.

This guide is available online at the following address: https://mq.agical.se/

The source code for all chapters of this book is available here:
https://mq.agical.se/github.html (https://mq.agical.se/github.html)

Info

5

https://www.agical.se/
https://www.agical.se/
https://mq.agical.se/github.html
https://mq.agical.se/github.html

Game development guide

In this guide we will be developing a game from scratch. In each chapter we will add a small feature
to the game that explains a part of the Macroquad library. In the beginning the game will be very
simple, but at the end of the guide you will have built a complete game with graphics and sound.
You will be able to build the game for desktop computers, the web, as well as mobile devices.

The game we are making is a classic shoot ’em up where the player controls a spaceship that has to
shoot down enemies flying down from the top of the screen.

This is Ferris, the teacher who will show up at the end of every chapter to give you an extra
challenge. Doing the challenge is optional; you can continue to the next chapter without it.

The Macroquad game library

Macroquad is a game library for the programming language Rust. It includes everything you need to
develop a 2D game. The main advantage of Macroquad compared with other game libraries is that it
works with many different platforms. Since it has very few dependencies it also compiles very fast.

With Macroquad it’s possible to develop games for desktop operating systems like Windows, Mac,
and Linux. It also has support to compile for mobile devices like iOS and Android. Thanks to the
WebAssembly support it can also be compiled to run in a web browser. All this can be done without
having to write any platform specific code.

The library has efficient 2D rendering support, and some rudimentary 3D features. It also includes a
simple immediate UI library to make graphical game interfaces.

This guide assumes some prior knowledge of Rust programming. However there are no advanced
concepts, so if you already know another programming language it is still possible to follow along.
More information about Rust is available in the Rust book (https://doc.rust-lang.org/book/) that is
available online. I can also recommend the book Hands-on Rust (https://hands-on-rust.com/) by
Herbert Wolverson where you learn Rust by writing a roguelike game.

Challenge

6

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://hands-on-rust.com/
https://hands-on-rust.com/

On the Macroquad homepage (https://macroquad.rs) there are examples
(https://macroquad.rs/examples/) of how different features of Macroquad work, Macroquad-
related articles (https://macroquad.rs/articles), and documentation of the API
(https://docs.rs/macroquad/latest/macroquad/).

This guide is written for version 0.4 of Macroquad. It may not work for future versions because
Macroquad is under active development.

PDF book

This guide is also available as a downloadable PDF book (https://mq.agical.se/pdf/output.pdf).

Game development in Rust with Macroquad (https://mq.agical.se/) by Olle Wreede
(https://olle.wreede.se/) is licensed under
CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/?ref=chooser-v1)

Find more info on the Macroquad homepage

Macroquad version 0.4

7

https://macroquad.rs/
https://macroquad.rs/
https://macroquad.rs/examples/
https://macroquad.rs/examples/
https://macroquad.rs/articles
https://macroquad.rs/articles
https://docs.rs/macroquad/latest/macroquad/
https://docs.rs/macroquad/latest/macroquad/
https://mq.agical.se/pdf/output.pdf
https://mq.agical.se/pdf/output.pdf
https://mq.agical.se/
https://mq.agical.se/
https://olle.wreede.se/
https://olle.wreede.se/
https://creativecommons.org/licenses/by-sa/4.0/?ref=chooser-v1

Your first Macroquad app

Now it’s time to develop your first application with Macroquad. Start by installing (https://www.rust-
lang.org/learn/get-started) the programming language Rust if you don’t already have it.

Implementation

Create a new Rust project using the Cargo command line tool and add macroquad with version 0.4
as a dependency. If you want, you can give your game a more interesting name than “my-game”.

Your Cargo.toml file should now look like this:

cargo new --bin my-game
cd my-game/
cargo add macroquad@0.4

8

https://www.rust-lang.org/learn/get-started
https://www.rust-lang.org/learn/get-started
https://www.rust-lang.org/learn/get-started

Open the file src/main.rs in your favorite text editor and change the content to look like this:

Run your application with cargo run , and a new window with a dark purple background will open
once the compilation has finished.

Description of the application

The first line is used to import everything you need from Macroquad. This is most easily done by
importing macroquad::prelude::* , but it is also possible to import only the features that are used.

The attribute #[macroquad::main("My game")] is used to tell Macroquad which function will be run
when the application starts. When the application is started, a window will open with the argument
as the title, and the function will be executed asynchronously. If you have named your game
something more interesting you should change the text `My game´ to the name of your game.

To change the configuration for the window, such as the size or whether it should start in
fullscreen mode, you can use the struct Conf
(https://docs.rs/macroquad/latest/macroquad/window/struct.Conf.html) instead of the string as
an argument.

Inside the main function there is a loop that never ends. All the game logic will be placed inside this
game loop and will be executed in every frame. In our case we clear the background of the window

[package]
name = "my-game"
version = "0.1.0"
edition = "2024"

See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]
macroquad = "0.4"

use macroquad::prelude::*;

#[macroquad::main("My game")]
async fn main() {
 loop {
 clear_background(DARKPURPLE);
 next_frame().await
 }
}

Control the window configuration

9

https://docs.rs/macroquad/latest/macroquad/window/struct.Conf.html
https://docs.rs/macroquad/latest/macroquad/window/struct.Conf.html

with a dark purple color with the function clear_background(DARKPURPLE) . At the end of the loop is
the function next_frame().await which will wait until the next frame is available.

Even if clear_background() isn’t used explicitly, the screen will be cleared with a black color at
the start of each frame.

Try changing the background of the window to your favorite color.

Clears with black as default

Challenge: Change background color

10

Publish on the web (if you want)

One of the big advantages with Rust and Macroquad is that it is very easy to compile a standalone
application for different platforms. How this works will be explained in a later chapter of this guide. If
you want, you can setup a GitHub deploy action to publish a web version of the game every time you
commit.

When you created the game with cargo new a local Git repository was also created. Start by
committing your changes locally. After that you can create a repository on GitHub and push the code
there.

The two files below refer to my-game.wasm . If you’ve changed the name of your crate to
something other than my-game you need to change those references.

You need an HTML file to show the game. Create a file called index.html in the root of the
project/crate and add the following content:

The name of the game

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <title>My Game</title>
 <style>
 html,
 body,
 canvas {
 margin: 0;
 padding: 0;
 width: 100%;
 height: 100%;
 overflow: hidden;
 position: absolute;
 background: black;
 z-index: 0;
 }
 </style>
</head>
<body>
 <canvas id="glcanvas" tabindex='1'></canvas>
 <!-- Minified and statically hosted version of https://github.com/not-
fl3/macroquad/blob/master/js/mq_js_bundle.js -->
 <script src="https://not-fl3.github.io/miniquad-samples/mq_js_bundle.js"></script>
 <script>load("my-game.wasm");</script> <!-- Your compiled WASM binary -->
</body>
</html>

11

file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-game.html

The following GitHub Actions Workflow will compile the game to WASM and put all files in place so
that the game will work on the web. Place the code in .github/workflows/deploy.yml .

Commit and push! You can follow the build under the Actions page of the repository. The first time
you push your code the game will be built and all files placed in the correct place, in the root of the
branch gh-pages , but no web page will be created. You need to change a configuration of the
GitHub repository under Settings > Pages > Build and deployment. Set gh-pages as the branch
from which to deploy the web page.

name: Build and Deploy
on:
 push:
 branches:
 - main # If your default branch is named something else, change this

permissions:
 contents: write
 pages: write

jobs:
 build-and-deploy:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@v2

 - name: Install Rust
 uses: actions-rs/toolchain@v1
 with:
 toolchain: stable
 target: wasm32-unknown-unknown
 override: true

 - name: Build
 run: cargo build --release --target wasm32-unknown-unknown

 - name: Prepare Deployment Directory
 run: |
 mkdir -p ./deploy
 cp ./target/wasm32-unknown-unknown/release/my-game.wasm ./deploy/
 cp index.html ./deploy/

 - name: Deploy
 uses: peaceiris/actions-gh-pages@v3
 with:
 github_token: ${{ secrets.GITHUB_TOKEN }}
 publish_dir: ./deploy

12

When the build is done you will be able to play your game on https://<your-github-
account>.github.io/<repository-name> .

It won’t be much of game yet, only a purple background. But you have delivered early, and the
project is configured for continuous delivery. Every time you add functionality to the game and push
the code to GitHub, you will be able to play the latest version of the game on the web. In the next
chapter things will start to move!

13

Fly away

A game is not much fun without something happening on the screen. To begin with, we will show a
circle that we can steer with the arrow keys on the keyboard.

Implementation

The first two lines of the main function uses the functions screen_width() and screen_height()
to get the width and height of the application window. These values are divided by 2 to get the
coordinates of the center of the window, and stored in the variables x and y . These variables will
be used to decide where to draw the circle on the screen.

 let mut x = screen_width() / 2.0;
 let mut y = screen_height() / 2.0;

14

Handle keyboard input

Inside the main loop we will still clear the background as it should be done in each frame. After that
there are four if statements that check if any of the arrow keys on the keyboard has been pressed.
The variables x and y are changed to move the circle in the corresponding direction.

The function is_key_down() returns true if the given key is being pressed during the current frame.
The argument is of the enum KeyCode that contains all keys available on the keyboard.

You can read more about how the Rust enum feature (https://doc.rust-lang.org/book/ch06-00-
enums.html) works in the Rust book.

You can find other available keys in the documentation of KeyCode
(https://docs.rs/macroquad/latest/macroquad/input/enum.KeyCode.html).

Draw a circle

Finally we will draw a circle on the screen at the coordinates in x and y . The circle has a radius of
16 and will be drawn in a yellow color.

More on enums

 if is_key_down(KeyCode::Right) {
 x += 1.0;
 }
 if is_key_down(KeyCode::Left) {
 x -= 1.0;
 }
 if is_key_down(KeyCode::Down) {
 y += 1.0;
 }
 if is_key_down(KeyCode::Up) {
 y -= 1.0;
 }

More keycodes!

 draw_circle(x, y, 16.0, YELLOW);

15

https://doc.rust-lang.org/book/ch06-00-enums.html
https://doc.rust-lang.org/book/ch06-00-enums.html
https://docs.rs/macroquad/latest/macroquad/input/enum.KeyCode.html
https://docs.rs/macroquad/latest/macroquad/input/enum.KeyCode.html

Macroquad has several constants for common colors
(https://docs.rs/macroquad/latest/macroquad/color/colors/index.html), and you can also use the
macro color_u8 (https://docs.rs/macroquad/latest/macroquad/macro.color_u8.html) to create
a color with specific values for red, green, blue, and transparency.

The other shapes that can be drawn with Macroquad are described in the documentation of
Macroquad’s Shape API (https://docs.rs/macroquad/latest/macroquad/shapes/index.html).

Change the value added to x and y to define how fast the circle will move.

Colors and shapes

Challenge: Faster movement

16

https://docs.rs/macroquad/latest/macroquad/color/colors/index.html
https://docs.rs/macroquad/latest/macroquad/color/colors/index.html
https://docs.rs/macroquad/latest/macroquad/macro.color_u8.html
https://docs.rs/macroquad/latest/macroquad/shapes/index.html
https://docs.rs/macroquad/latest/macroquad/shapes/index.html

Source

The source of main.rs should look like this:

When you run the game, a yellow circle will appear in the middle of the window. Try using the arrow
keys to move the circle around.

use macroquad::prelude::*;

#[macroquad::main("My game")]
async fn main() {
 let mut x = screen_width() / 2.0;
 let mut y = screen_height() / 2.0;

 loop {
 clear_background(DARKPURPLE);

 if is_key_down(KeyCode::Right) {
 x += 1.0;
 }
 if is_key_down(KeyCode::Left) {
 x -= 1.0;
 }
 if is_key_down(KeyCode::Down) {
 y += 1.0;
 }
 if is_key_down(KeyCode::Up) {
 y -= 1.0;
 }

 draw_circle(x, y, 16.0, YELLOW);

 next_frame().await
 }
}

17

Smooth movement

Since Macroquad will draw frames as quickly as possible, we need to check how much time has
passed between each update to determine how far the circle should move. Otherwise, our game will
run at different speeds on different computers, depending on how quickly they can run the
application. The specific framerate will depend on your computer; if Vsync is enabled it may be
locked to 30 or 60 frames per second.

Implementation

We will expand the application and add a constant that determines how quickly the circle should
move. We call the constant MOVEMENT_SPEED and assign the value 200.0 . If the circle moves too fast
or too slow, we can decrease or increase this value.

 const MOVEMENT_SPEED: f32 = 200.0;

18

Time between frames

Now we will use the function get_frame_time() to get the time in seconds that has passed since the
last frame. We assign this value to a variable called delta_time that we will use later.

Update movement

When the variables x and y are updated, we will multiply the values of the constant
MOVEMENT_SPEED by the variable delta_time to get how far the circle should move during this

frame.

Limit movement

Finally, we will prevent the circle from moving outside of the window. We use the Macroquad
function clamp() to make sure x and y are never below 0 or above the width of the window.

The clamp() function is used to clamp a value between a minimum and maximum value. It is
part of the Macroquad Math API
(https://docs.rs/macroquad/latest/macroquad/math/index.html).

 let delta_time = get_frame_time();

 x += MOVEMENT_SPEED * delta_time;

 x -= MOVEMENT_SPEED * delta_time;

 y += MOVEMENT_SPEED * delta_time;

 y -= MOVEMENT_SPEED * delta_time;

 if is_key_down(KeyCode::Right) {

 }
 if is_key_down(KeyCode::Left) {

 }
 if is_key_down(KeyCode::Down) {

 }
 if is_key_down(KeyCode::Up) {

 }

 x = clamp(x, 0.0, screen_width());
 y = clamp(y, 0.0, screen_height());

The Macroquad Math API

19

https://docs.rs/macroquad/latest/macroquad/math/index.html
https://docs.rs/macroquad/latest/macroquad/math/index.html

Change the constant MOVEMENT_SPEED if the circle is moving too slow or too fast.

What do you need to change to ensure that the entire circle stays within the window when the
position is clamped?

Source

The code should now look like this:

Challenge: Clamp movement

use macroquad::prelude::*;

#[macroquad::main("My game")]
async fn main() {
 const MOVEMENT_SPEED: f32 = 200.0;

 let mut x = screen_width() / 2.0;
 let mut y = screen_height() / 2.0;

 loop {
 clear_background(DARKPURPLE);

 let delta_time = get_frame_time();
 if is_key_down(KeyCode::Right) {
 x += MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Left) {
 x -= MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Down) {
 y += MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Up) {
 y -= MOVEMENT_SPEED * delta_time;
 }

 x = clamp(x, 0.0, screen_width());
 y = clamp(y, 0.0, screen_height());

 draw_circle(x, y, 16.0, YELLOW);
 next_frame().await
 }
}

20

Falling squares

To make sure there is something happening in our game, it’s time to create some action. Since the
hero in our game is a brave circle, our opponents will be squares falling down from the top of the
window.

Implementation

Struct for shapes

To keep track of our circle and all the squares, we’ll create a struct that we can name Shape , which
will contain the size and speed, as well as x and y coordinates.

21

Initialize random number generator

We’ll use a random number generator to determine when new squares should appear on the
screen, how big they should be and how fast they will move. Therefore, we need to seed the random
generator so that it doesn’t produce the same random numbers every time. This is done at the
beginning of the main function using the rand::srand() method, to which we pass the current
time as the seed.

We are using the function miniquad::date::now() from the graphics library Miniquad
(https://docs.rs/miniquad/latest/miniquad/index.html) to get the current time.

Vector of squares

At the beginning of the main function we create a vector called squares that will contain all the
squares to be displayed on the screen. The new variable circle will represent our hero, the
amazing circle. The speed uses the constant MOVEMENT_SPEED , and the x and y fields are set to the
center of the screen.

Start by modifying the program so that circle is used instead of the variables x and y and
confirm that everything works as it did before adding the enemy squares.

struct Shape {
 size: f32,
 speed: f32,
 x: f32,
 y: f32,
}

 rand::srand(miniquad::date::now() as u64);

Miniquad in play!

 let mut squares = vec![];
 let mut circle = Shape {
 size: 32.0,
 speed: MOVEMENT_SPEED,
 x: screen_width() / 2.0,
 y: screen_height() / 2.0,
 };

22

https://docs.rs/miniquad/latest/miniquad/index.html
https://docs.rs/miniquad/latest/miniquad/index.html

The Rust compiler might warn about “type annotations needed” on the Vector. Once we add an
enemy square in the next section that warning should disappear.

Add enemy squares

It’s time to start the invasion of evil squares. Here, just like before, we split updating the movement
and drawing the squares. This way, the movement does not depend on the screen’s refresh rate,
ensuring that all changes are done before we start drawing anything to the screen.

First, we use the function rand::gen_range() to determine whether to add a new square. It takes
two arguments, a minimum value and a maximum value, and returns a random number between
those two values. We generate a random number between 0 and 99, and if the value is 95 or higher,
a new Shape is created and added to the squares vector. To add some variation, we also use
rand::gen_range() to get different size, speed, and starting position of every square.

Rectangles are drawn starting from their upper left corner. Therefore, we subtract half of the
square’s size when calculating the x position. The y position starts at a negative value of the
square’s size, so it starts completely outside the screen.

Update square positions

Now we can iterate through the vector using a for loop and update the Y position using the square’s
speed and the variable delta_time . This will make the squares move downwards across the screen.

Getting a “type annotation needed” warning?

 if rand::gen_range(0, 99) >= 95 {
 let size = rand::gen_range(16.0, 64.0);
 squares.push(Shape {
 size,
 speed: rand::gen_range(50.0, 150.0),
 x: rand::gen_range(size / 2.0, screen_width() - size / 2.0),
 y: -size,
 });
 }

The coordinate system starts top left

 for square in &mut squares {
 square.y += square.speed * delta_time;
 }

23

Remove invisible squares

Next, we need to clean up all the squares that have moved off the bottom of the screen since it’s
unnecessary to draw things that are not visible. We’ll use the retain() method on the vector, which
takes a function that determines whether elements should be kept. We’ll check if the square’s y
value is still less than the height of the window plus the size of the square.

Draw the squares

Finally, we add a for loop that iterates over the squares vector and uses the function
draw_rectangle() to draw a rectangle at the updated position and with the correct size. Since

rectangles are drawn with x and y from the top-left corner and our coordinates are based on the
center of the square, we use some mathematics to calculate where they should be placed. The size is
used twice, once for the width of the square and once for the height. We set the color to GREEN so
that all squares will have a green color.

It’s also possible to use the function draw_rectangle_ex()
(https://docs.rs/macroquad/latest/macroquad/shapes/fn.draw_rectangle_ex.html) that uses the
struct DrawTextureParams
(https://docs.rs/macroquad/latest/macroquad/shapes/struct.DrawRectangleParams.html)
instead of a color. In addition to setting color, it can be used to set rotation and offset of the
rectangle.

 squares.retain(|square| square.y < screen_height() + square.size);

 for square in &squares {
 draw_rectangle(
 square.x - square.size / 2.0,
 square.y - square.size / 2.0,
 square.size,
 square.size,
 GREEN,
);
 }

Fancier rectangles available

24

https://docs.rs/macroquad/latest/macroquad/shapes/fn.draw_rectangle_ex.html
https://docs.rs/macroquad/latest/macroquad/shapes/fn.draw_rectangle_ex.html
https://docs.rs/macroquad/latest/macroquad/shapes/struct.DrawRectangleParams.html
https://docs.rs/macroquad/latest/macroquad/shapes/struct.DrawRectangleParams.html

Try setting a different color for each square by using the method choose() on vectors from
Macroquad’s ChooseRandom trait
(https://docs.rs/macroquad/latest/macroquad/rand/trait.ChooseRandom.html), which returns a
random element from the vector.

Challenge: Multiple colors

25

https://docs.rs/macroquad/latest/macroquad/rand/trait.ChooseRandom.html
https://docs.rs/macroquad/latest/macroquad/rand/trait.ChooseRandom.html

Collisions

To make the game more exciting, let’s add some conflict. If our hero, the brave yellow circle, collides
with a square, the game will be over and has to be restarted.

After we have drawn the circle and all squares, we’ll add a check to see if any square touches the
circle. If it does, we’ll display the text “ GAME OVER! ” in capital letters and wait for the player to press
the space key. When the player presses space, we’ll reset the vector with squares and move the
circle back to the center of the screen.

26

Implementation

Collision function

We expand the Shape struct with an implementation that contains the method collides_with() to
check if it collides with another Shape . This method uses the overlaps() helper method from
Macroquad’s Rect (https://docs.rs/macroquad/latest/macroquad/math/struct.Rect.html) struct. We
also create a helper method called rect() that creates a Rect from our Shape.

There are many methods on Rect to do calculations on rectangles, such as contains() ,
intersect() , scale() , combine_with() and move_to() .

The origin of Macroquad’s Rect is also from the top left corner, so we must subtract half its size
from both X and Y .

Is it game over?

Let’s add a boolean variable called gameover to the start of the main loop to keep track of whether
the player has died.

Since we don’t want the circle and squares to move while it’s game over, the movement code is
wrapped in an if statement that checks if the gameover variable is false .

The Macroquad Rect struct

impl Shape {
 fn collides_with(&self, other: &Self) -> bool {
 self.rect().overlaps(&other.rect())
 }

 fn rect(&self) -> Rect {
 Rect {
 x: self.x - self.size / 2.0,
 y: self.y - self.size / 2.0,
 w: self.size,
 h: self.size,
 }
 }
}

Rect origin

 let mut gameover = false;

27

https://docs.rs/macroquad/latest/macroquad/math/struct.Rect.html

Collision

After the movement code, we add a check if any square collides with the circle. We use the method
any() on the iterator for the vector squares and check if any square collides with our hero circle. If

a collision occurs, we set the variable gameover to true.

The collision code assumes that the circle is a square. Try writing code that takes into account
that the circle does not entirely fill the square.

Reset the game

If the gameover variable is true and the player has just pressed the space key, we clear the vector
squares using the clear() method and reset the x and y coordinates of circle to the center of

the screen. Then, we set the variable gameover to false so that the game can start over.

 if !gameover {
 ...
 }

 if squares.iter().any(|square| circle.collides_with(square)) {
 gameover = true;
 }

Challenge: Circle collision

 if gameover && is_key_pressed(KeyCode::Space) {
 squares.clear();
 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 gameover = false;
 }

28

The difference between the functions is_key_down() and is_key_pressed() is that the latter
only checks if the key was pressed during the current frame, while the former returns true for all
frames from when the button was pressed and then held down. An experiment you can do is to
use is_key_pressed() to control the circle.

There’s also a function called is_key_released() which checks if the key was released during
the current frame.

Display GAME OVER

Finally, we draw the text “GAME OVER!” in the middle of the screen after the circle and squares have
been drawn, but only if the variable gameover is true . Macroquad does not have any feature to
decide which things will be drawn on top of other things. Each thing drawn will be drawn on top of
all other things drawn earlier during the the same frame.

It’s also possible to use the function draw_text_ex()
(https://docs.rs/macroquad/latest/macroquad/text/fn.draw_text_ex.html) which takes a
DrawTextParams struct

(https://docs.rs/macroquad/latest/macroquad/text/struct.TextParams.html) instead of
font_size and color . Using that struct it’s possible to set more parameters such as font ,
font_scale , font_scale_aspect and rotation .

Key press difference

Extended text parameters

 if gameover {
 let text = "GAME OVER!";
 let text_dimensions = measure_text(text, None, 50, 1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 RED,
);
 }

29

https://docs.rs/macroquad/latest/macroquad/text/fn.draw_text_ex.html
https://docs.rs/macroquad/latest/macroquad/text/fn.draw_text_ex.html
https://docs.rs/macroquad/latest/macroquad/text/struct.TextParams.html
https://docs.rs/macroquad/latest/macroquad/text/struct.TextParams.html

Since draw_text() is based on the text’s baseline, the text won’t appear exactly in the center of
the screen. Try using the offset_y and height fields from text_dimensions to calculate the
text’s midpoint. Macroquad’s example text measures (https://github.com/not-
fl3/macroquad/blob/master/examples/text_measures.rs) can provide tips on how it works.

Challenge: Calculate midpoint

30

https://github.com/not-fl3/macroquad/blob/master/examples/text_measures.rs
https://github.com/not-fl3/macroquad/blob/master/examples/text_measures.rs
https://github.com/not-fl3/macroquad/blob/master/examples/text_measures.rs

Bullet hell

It is slightly unfair that our poor circle isn’t able to defend itself against the terrifying squares. So it’s
time to implement the ability for the circle to shoot bullets.

Implementation

Dead or alive?

To keep track of which squares have been hit by bullets we add the field collided of the type bool
to the struct Shape .

31

Keeping track

We need another vector to keep track of all the bullets. For simplicity’s sake we’ll call it bullets . Add
it after the squares vector. Here we’ll also set the type of the elements to ensure that the Rust
compiler knows what type it is before we have added anything to it. We’ll use the struct Shape for
the bullets as well.

Shoot bullets

After the circle has moved we’ll add a check if the player has pressed the space key and add a bullet
to the bullets vector. The x and y coordinates of the bullet are set to the same values as for the
circle, and the speed is set to twice that of the circle.

Note that we’re using the function is_key_pressed() which only returns true during the frame
when the key was first pressed.

Since we added a new field to the Shape struct we’ll need to set it when we create a square.

 collided: bool,

struct Shape {
 size: f32,
 speed: f32,
 x: f32,
 y: f32,

}

 let mut bullets: Vec<Shape> = vec![];

 if is_key_pressed(KeyCode::Space) {
 bullets.push(Shape {
 x: circle.x,
 y: circle.y,
 speed: circle.speed * 2.0,
 size: 5.0,
 collided: false,
 });
 }

Only one shot

32

Move bullets

We don’t want the bullets to be stationary mines, so we’ll have to loop over the bullets vector and
move them in the y direction. Add the following code after the code that moves the squares.

Remove bullets and squares

Make sure to remove the bullets that have exited the screen in the same way that the squares are
removed.

Now it is time to remove all the squares and bullets that have collided. It can be done with the
retain method on the vectors which takes a predicate that should return true if the element

should be kept. We’ll just check whether the collided field on the struct is false. Do the same thing
for both the squares and the bullets vectors.

Collision

After the check if the circle has collided with a square we’ll add another check if any of the squares
have been hit by a bullet. We’ll set the field collided to true for both the square and the bullet so
that they can be removed.

 collided: false,

 squares.push(Shape {
 size,
 speed: rand::gen_range(50.0, 150.0),
 x: rand::gen_range(size / 2.0, screen_width() - size / 2.0),
 y: -size,

 });

 for bullet in &mut bullets {
 bullet.y -= bullet.speed * delta_time;
 }

 for square in &mut squares {
 square.y += square.speed * delta_time;
 }

 bullets.retain(|bullet| bullet.y > 0.0 - bullet.size / 2.0);

 squares.retain(|square| !square.collided);
 bullets.retain(|bullet| !bullet.collided);

33

Clear bullets

When the game is over we also have to clear the bullets vector so that all the bullets are removed
when a new game is started.

Draw bullets

Before the circle is drawn we’ll draw all the bullets that the player has shot. This ensures that they
are drawn behind all the other shapes.

The is another function called draw_circle_lines()
(https://docs.rs/macroquad/latest/macroquad/shapes/fn.draw_circle_lines.html) that can be
used to draw a circle with just the outline.

This is all the code that is needed for the circle to be able to shoot down all the fearsome squares.

 for square in squares.iter_mut() {
 for bullet in bullets.iter_mut() {
 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;
 }
 }
 }

 bullets.clear();

 if gameover && is_key_pressed(KeyCode::Space) {
 squares.clear();

 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 gameover = false;
 }

 for bullet in &bullets {
 draw_circle(bullet.x, bullet.y, bullet.size / 2.0, RED);
 }

Outlined circle

34

https://docs.rs/macroquad/latest/macroquad/shapes/fn.draw_circle_lines.html
https://docs.rs/macroquad/latest/macroquad/shapes/fn.draw_circle_lines.html

To increase the difficulty it’s possible to add a minimum time for reloading between each shot.
Try using the function get_time()
(https://docs.rs/macroquad/latest/macroquad/time/fn.get_time.html) to save when the last shot
was fired and compare it with the current time. Only add a bullet if the difference is above a
certain threshold.

Another possibility is to only allow a specific number of bullets on the screen at the same time.

Challenge: Bullet reloading

35

https://docs.rs/macroquad/latest/macroquad/time/fn.get_time.html
https://docs.rs/macroquad/latest/macroquad/time/fn.get_time.html

Points

What is a game without points and a high score? Now that the circle can shoot down the squares it is
time to add some points. Every square that is shot down will add to the score, where bigger squares
will be worth more points. The current score will be shown on the screen, as well as the highest
score achieved.

Bigger squares could be worth more because they contain more resources. It is also possible to
make bigger circles harder to kill by requiring multiple hits to destroy.

If the current score is the highest score when the game is over, it will be written to a file on disk so
that it can be read each time the game is started. This will only work if the game is played on desktop
as the WebAssembly version doesn’t have access to the file system. It would be possible to store the

Is bigger better?

36

high score in the browser storage, but that won’t be covered here to keep the implementation
simple.

Implementation

Import module

To be able to read and write files we need to import the std::fs module (https://doc.rust-
lang.org/std/fs/index.html) from the Rust standard library. Add this line directly below the line to
import Macroquad at the top of the file.

New variables

We will need two new variables, score and high_score , to keep track of the player’s points as well
as the highest score ever achieved. We’ll use the function fs::read_to_string() to read the file
highscore.dat from disk. The points stored in the file need to be converted to u32 with i.parse::
<u32>() . If anything goes wrong, if the file doesn’t exist or it contains something other than a
number, the number 0 will be returned instead.

We’re writing the points directly to the computers hard drive, which will not work if the game has
been compiled to WebAssembly and is run on a web page. This will be treated as if the file
doesn’t exist.

It could be possible to use the browser’s storage, or sending the score to a web server, but that is
not covered by this guide.

Updating the high score

If the circle collides with a square we’ll check if the current score is higher than the high score. If it is
higher, we’ll update the high score and store the new high score to the file highscore.dat .

use std::fs;

 let mut score: u32 = 0;
 let mut high_score: u32 = fs::read_to_string("highscore.dat")
 .map_or(Ok(0), |i| i.parse::<u32>())
 .unwrap_or(0);

Writing to disk

37

https://doc.rust-lang.org/std/fs/index.html
https://doc.rust-lang.org/std/fs/index.html
https://doc.rust-lang.org/std/fs/index.html

Macroquad supports reading files when the game is run on a web page. We could use the
function load_string() (https://docs.rs/macroquad/latest/macroquad/file/fn.load_string.html)
to load the high score instead. But since it isn’t possible to save the file, this isn’t particularly
useful in this case.

Increasing the score

When a bullet hits a square, we’ll increase the current score based on the size of the square. After
that we’ll update the high_score if the current score is higher.

Resetting the score

When a new game is started, we need to set the score variable to 0 .

Displaying scores

Finally, we’ll display the score and high_score on the screen. We’ll display the score in the top left
corner of the screen. To be able to display the high score in the top right corner we’ll use the

 if score == high_score {
 fs::write("highscore.dat", high_score.to_string()).ok();
 }

 if squares.iter().any(|square| circle.collides_with(square)) {

 gameover = true;
 }

Reading files on web

 score += square.size.round() as u32;
 high_score = high_score.max(score);

 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;

 }

 score = 0;

 if gameover && is_key_pressed(KeyCode::Space) {
 squares.clear();
 bullets.clear();
 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;

 gameover = false;
 }

38

https://docs.rs/macroquad/latest/macroquad/file/fn.load_string.html

function measure_text() (https://docs.rs/macroquad/latest/macroquad/text/fn.measure_text.html)
to calculate how far from the right edge of the screen the text should be displayed.

To ensure that the dimensions are correct we must use the same arguments for both
measure_text() and draw_text() . The arguments for these functions are text , font , font_size

and font_scale . Since we aren’t setting any specific font or scaling the size of the text, we’ll use
None as the value for font , and 1.0 as font_scale . The font_size can be set to 25.0 .

The function measure_text() returns the struct TextDimensions
(https://docs.rs/macroquad/latest/macroquad/text/struct.TextDimensions.html) which contains
the fields width , height , and offset_y .

Run the game and try to get a high score!

Try writing a congratulations message below the “GAME OVER” text if the player reached a high
score.

 draw_text(
 format!("Score: {}", score).as_str(),
 10.0,
 35.0,
 25.0,
 WHITE,
);
 let highscore_text = format!("High score: {}", high_score);
 let text_dimensions = measure_text(highscore_text.as_str(), None, 25, 1.0);
 draw_text(
 highscore_text.as_str(),
 screen_width() - text_dimensions.width - 10.0,
 35.0,
 25.0,
 WHITE,
);

Measure text

Challenge: High score message

39

https://docs.rs/macroquad/latest/macroquad/text/fn.measure_text.html
https://docs.rs/macroquad/latest/macroquad/text/struct.TextDimensions.html
https://docs.rs/macroquad/latest/macroquad/text/struct.TextDimensions.html

Game state

Before we add any more functionality to our game it’s time for some refactoring. To make it easier to
keep track of the game state we’ll add an enum called GameState with variants to differentiate
between the game being played and the game being over. This will allows us to remove the
gameover variable, and we can add states for showing a start menu and pausing the game.

Implementation

Game state enum

Begin by adding an enum called GameState below the Shape implementation. It should contain all
four possible game states: MainMenu , Playing , Paused , and GameOver .

40

Game state variable

Replace the line that declares the gameover variable with a line that instantiates a game_state
variable set to GameState::MainMenu .

Match on GameState

We’ll replace the old code in the game loop with code that uses the match control flow construct on
the game_state variable. It has to match on all four states in the enum. Later on we’ll add back code
from the earlier chapter within the matching arms. Keep the call to clearing the screen at the start of
the loop, and the call to next_frame().await at the end.

Main menu

Now let’s add back code into the match arms to handle each game state. When the game is started,
the state will be GameState::MainMenu . We’ll start by quitting the game if the Escape key is pressed.
If the player presses the space key we’ll set the game_state to the new state GameState::Playing .

enum GameState {
 MainMenu,
 Playing,
 Paused,
 GameOver,
}

 let mut game_state = GameState::MainMenu;

 match game_state {
 GameState::MainMenu => {
 ...
 }
 GameState::Playing => {
 ...
 }
 GameState::Paused => {
 ...
 }
 GameState::GameOver => {
 ...
 }
 }

 clear_background(DARKPURPLE);

 next_frame().await

41

We’ll also reset all the game variables. We will also draw the text “Press space” in the middle of the
screen.

Playing the game

Let’s add back the code for playing the game to the matching arm for the state
GameState::Playing . It’s the same code as most of the game loop from the last chapter. However,

don’t add back the code that handles Game Over as it will be added in the matching arm for the
GameState::GameOver .

We’ll also add a code that checks if the player presses the Escape key and change the state to
GameState::Paused . This will ensure that the game will be paused in the next iteration of the game

loop.

 GameState::MainMenu => {
 if is_key_pressed(KeyCode::Escape) {
 std::process::exit(0);
 }
 if is_key_pressed(KeyCode::Space) {
 squares.clear();
 bullets.clear();
 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 score = 0;
 game_state = GameState::Playing;
 }
 let text = "Press space";
 let text_dimensions = measure_text(text, None, 50, 1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 WHITE,
);
 },

42

 GameState::Playing => {

 if is_key_pressed(KeyCode::Escape) {
 game_state = GameState::Paused;
 }

 let delta_time = get_frame_time();
 if is_key_down(KeyCode::Right) {
 circle.x += MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Left) {
 circle.x -= MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Down) {
 circle.y += MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Up) {
 circle.y -= MOVEMENT_SPEED * delta_time;
 }
 if is_key_pressed(KeyCode::Space) {
 bullets.push(Shape {
 x: circle.x,
 y: circle.y,
 speed: circle.speed * 2.0,
 size: 5.0,
 collided: false,
 });
 }

 // Clamp X and Y to be within the screen
 circle.x = clamp(circle.x, 0.0, screen_width());
 circle.y = clamp(circle.y, 0.0, screen_height());

 // Generate a new square
 if rand::gen_range(0, 99) >= 95 {
 let size = rand::gen_range(16.0, 64.0);
 squares.push(Shape {
 size,
 speed: rand::gen_range(50.0, 150.0),
 x: rand::gen_range(size / 2.0, screen_width() - size / 2.0),
 y: -size,
 collided: false,
 });
 }

 // Movement
 for square in &mut squares {
 square.y += square.speed * delta_time;
 }
 for bullet in &mut bullets {
 bullet.y -= bullet.speed * delta_time;
 }

 // Remove shapes outside of screen
 squares.retain(|square| square.y < screen_height() + square.size);
 bullets.retain(|bullet| bullet.y > 0.0 - bullet.size / 2.0);

 // Remove collided shapes
 squares.retain(|square| !square.collided);
 bullets.retain(|bullet| !bullet.collided);

43

Pause the game

Many games have the option to pause the action, so we’ll add support for that in our game, too.
When the game is paused, we’ll check if the player presses the Space key and change the game

 game_state = GameState::GameOver;

 },

 // Check for collisions
 if squares.iter().any(|square| circle.collides_with(square)) {
 if score == high_score {
 fs::write("highscore.dat", high_score.to_string()).ok();
 }

 }
 for square in squares.iter_mut() {
 for bullet in bullets.iter_mut() {
 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;
 score += square.size.round() as u32;
 high_score = high_score.max(score);
 }
 }
 }

 // Draw everything
 for bullet in &bullets {
 draw_circle(bullet.x, bullet.y, bullet.size / 2.0, RED);
 }
 draw_circle(circle.x, circle.y, circle.size / 2.0, YELLOW);
 for square in &squares {
 draw_rectangle(
 square.x - square.size / 2.0,
 square.y - square.size / 2.0,
 square.size,
 square.size,
 GREEN,
);
 }
 draw_text(
 format!("Score: {}", score).as_str(),
 10.0,
 35.0,
 25.0,
 WHITE,
);
 let highscore_text = format!("High score: {}", high_score);
 let text_dimensions = measure_text(highscore_text.as_str(), None, 25,
1.0);
 draw_text(
 highscore_text.as_str(),
 screen_width() - text_dimensions.width - 10.0,
 35.0,
 25.0,
 WHITE,
);

44

state to GameState::Playing so that the game can continue. We’ll also draw a text on the screen
showing that the game is paused.

The changed game state will only come into effect in the next iteration of the game loop, so even if it
has been changed we need to display the text during the current frame.

Game Over

Finally we will handle what happens when the game is over. If the player presses the space bar we’ll
change the state to GameState::MainMenu to allow the player to start a new game or quit the game.
We’ll also draw the “GAME OVER!” text to the screen as we did in the last chapter.

Since the states for GameState::Playing and GameState::GameOver are separated, the squares
and circles will not be shown when the game is paused.

 GameState::Paused => {
 if is_key_pressed(KeyCode::Space) {
 game_state = GameState::Playing;
 }
 let text = "Paused";
 let text_dimensions = measure_text(text, None, 50, 1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 WHITE,
);
 },

 GameState::GameOver => {
 if is_key_pressed(KeyCode::Space) {
 game_state = GameState::MainMenu;
 }
 let text = "GAME OVER!";
 let text_dimensions = measure_text(text, None, 50, 1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 RED,
);
 },

Separate game states

45

Now that we have a main menu, you could come up with a name for your game and display it in
a large font at the top of the screen in the state GameState::MainMenu .

You could also try drawing all the circles and squares even when the game is paused without
moving them.

Challenge: Name of the game

46

Starfield shader

The purple background on the screen is starting to feel a bit boring. Instead we’ll add something
more interesting. We’ll use a pixel shader to display a moving starfield in the background. How to
implement a shader is outside the scope of this guide, so we’ll use one that has already been
prepared for us.

In short, a shader is a small program that runs on the GPU of the computer. They are written in a C-
like programming language called GLSL. The shader is made up of two parts, a vertex shader and a
fragment shader. The vertex shader converts from coordinates in a 3D environment to the 2D
coordinates of the screen. Whereas the fragment shader is run for every pixel on the screen to set
the variable gl_FragColor to define the color that pixel should have. Since our game is entirely in
2D, the vertex shader won’t do anything other than setting the position.

47

Implementation

Shaders

At the top of the main.rs file we’ll add a vertex shader, the fragment shader will be loaded from a
file that we will add later. We’ll use the Rust macro include_str!() to read the file as a &str at
compile time. The vertex shader is so short that it can be added directly in the Rust source code.

The most important line in the vertex shader is the line that sets gl_Position . For simplicity’s sake
we’ll also set the iTime variable that is used by the fragment shader from _Time.x . It would also be
possible to use _Time directly in the fragment shader, but it would mean we have to change it
slightly.

Initialize the shader

In the main() function, above the loop, we need to setup a few variables to be able to use the
shader. We start by adding the variable direction_modifier that will be used to change the
direction of the stars horizontally, depending on whether the circle is moved left or right. After that
we create a render_target to which the shader will be rendered.

Now we can create a Material with the vertex shader and the fragment shader using the enum
ShaderSource::Glsl .

In the parameters we’ll also setup two uniforms for the shader that are global variables that we can
set for every frame. The uniform iResolution will contain the size of the window and
direction_modifier is used to control the direction of the stars.

const FRAGMENT_SHADER: &str = include_str!("starfield-shader.glsl");

const VERTEX_SHADER: &str = "#version 100
attribute vec3 position;
attribute vec2 texcoord;
attribute vec4 color0;
varying float iTime;

uniform mat4 Model;
uniform mat4 Projection;
uniform vec4 _Time;

void main() {
 gl_Position = Projection * Model * vec4(position, 1);
 iTime = _Time.x;
}
";

48

Macroquad will automatically add some uniforms to all shaders. The available uniforms are
_Time , Model , Projection , Texture , and _ScreenTexture .

Draw the shader

It’s now time to change the purple background to our new starfield. Change the line
clear_background(DARKPURPLE); to the code below.

The first thing we need to do is to set the window resolution to the material uniform iResolution .
We’ll also set the direction_modifier uniform to the same value as the corresponding variable.

After this we’ll use the function gl_use_material() to use the material. Finally we can use the
function draw_texture_ex() to draw the texture from our render_target on the background of
the screen. Before we continue we’ll restore the shader with the function
gl_use_default_material() so that it won’t be used when drawing the rest of the game.

 let mut direction_modifier: f32 = 0.0;
 let render_target = render_target(320, 150);
 render_target.texture.set_filter(FilterMode::Nearest);
 let material = load_material(
 ShaderSource::Glsl {
 vertex: VERTEX_SHADER,
 fragment: FRAGMENT_SHADER,
 },
 MaterialParams {
 uniforms: vec![
 UniformDesc::new("iResolution", UniformType::Float2),
 UniformDesc::new("direction_modifier", UniformType::Float1),
],
 ..Default::default()
 },
)
 .unwrap();

Available uniforms

49

Controlling the stars

When the player holds down the left or right arrow key we’ll add or subtract a value from the
variable direction_modifier so that the shader can control the movement of the stars. Remember
to multiply the value with delta_time so that the change is relative to framerate, just like when
doing the movement.

Create the shader file

Now create a file with the name starfield-shader.glsl in the src directory to contain the
fragment shader and add the following code:

 clear_background(BLACK);

 material.set_uniform("iResolution", (screen_width(), screen_height()));
 material.set_uniform("direction_modifier", direction_modifier);
 gl_use_material(&material);
 draw_texture_ex(
 &render_target.texture,
 0.,
 0.,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(screen_width(), screen_height())),
 ..Default::default()
 },
);
 gl_use_default_material();

 direction_modifier += 0.05 * delta_time;

 direction_modifier -= 0.05 * delta_time;

 if is_key_down(KeyCode::Right) {
 circle.x += MOVEMENT_SPEED * delta_time;

 }
 if is_key_down(KeyCode::Left) {
 circle.x -= MOVEMENT_SPEED * delta_time;

 }

50

#version 100

// Starfield Tutorial by Martijn Steinrucken aka BigWings - 2020
// countfrolic@gmail.com
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
// From The Art of Code: https://www.youtube.com/watch?v=rvDo9LvfoVE

precision highp float;

varying vec4 color;
varying vec2 uv;
varying float iTime;

uniform vec2 iResolution;
uniform float direction_modifier;

#define NUM_LAYERS 4.

mat2 Rot(float a) {
 float s = sin(a), c = cos(a);
 return mat2(c, -s, s, c);
}

float Star(vec2 uv, float flare) {
 float d = length(uv);
 float m = .05 / d;

 float rays = max(0., 1. - abs(uv.x * uv.y * 1000.));
 m += rays * flare;
 uv *= Rot(3.1415 / 4.);
 rays = max(0., 1. - abs(uv.x * uv.y * 1000.));
 m += rays * .3 * flare;

 m *= smoothstep(1., .2, d);

 return m;
}

float Hash21(vec2 p) {
 p = fract(p * vec2(123.34, 456.21));
 p += dot(p, p + 45.32);
 return fract(p.x * p.y);
}

vec3 StarLayer(vec2 uv) {
 vec3 col = vec3(0);

 vec2 gv = fract(uv) - .5;
 vec2 id = floor(uv);

 float t = iTime * 0.1;
 for (int y = -1; y <= 1; y++) {
 for (int x = -1; x <= 1; x++) {
 vec2 offs = vec2(x, y);

 float n = Hash21(id + offs); // random between 0 and 1
 float size = fract(n * 345.32);
 float star = Star(gv - offs - vec2(n, fract(n * 42.)) + .5, smoothstep(.9,

51

If you want to know how the shader works you can watch the video Shader Coding: Making a
starfield (https://youtu.be/rvDo9LvfoVE) by The Art of Code.

Our starfield is now done and the game is starting to look like it takes place in outer space.

Look at the video Shader Coding: Making a starfield and see if you can change the color and size
of the stars.

1., size) * .6);
 vec3 color = sin(vec3(.8, .8, .8) * fract(n * 2345.2) * 123.2) * .5 + .5;
 color = color * vec3(0.25, 0.25, 0.20);
 star *= sin(iTime * 3. + n * 6.2831) * .5 + 1.;
 col += star * size * color;
 }
 }
 return col;
}

void main()
{
 vec2 uv = (gl_FragCoord.xy - .5 * iResolution.xy) / iResolution.y;
 float t = iTime * .02;

 float speed = 3.0;
 vec2 direction = vec2(-0.25 + direction_modifier, -1.0) * speed;

 uv += direction;
 vec3 col = vec3(0);

 for (float i = 0.; i < 1.; i += 1. / NUM_LAYERS) {
 float depth = fract(i+t);
 float scale = mix(20., .5, depth);
 float fade = depth * smoothstep(1., .9, depth);
 col += StarLayer(uv * scale + i * 453.2) * fade;
 }

 gl_FragColor = vec4(col, 1.0);
}

Shader Coding tutorial video

Challenge: Star colors

52

https://youtu.be/rvDo9LvfoVE
https://youtu.be/rvDo9LvfoVE
https://youtu.be/rvDo9LvfoVE

Particle explosions

We don’t want the squares to just disappear when they are hit by a bullet. So now we’ll make use of
the Macroquad particle system to generate explosions. With the particle system you can easily
create and draw many small particles on the screen based on a base configuration. In our case the
particles will start from the center of the square and move outwards in all directions. In a later
chapter we will add a graphical image to the particles to make it look even more like a real explosion.

Implementation

Add the particle crate

The code for Macroquads particle system is in a separate crate. Start by adding it to the Cargo.toml
file, either by changing the file by hand, or by running the following command:

53

The following line will be added to the Cargo.toml file under the heading [dependencies] .

Version 0.2.2 of macroquad-particles doesn’t support the latest version of Macroquad. If you get
an error when compiling you can try using both macroquad and macroquad-particles crates
directly from git (https://doc.rust-lang.org/cargo/reference/specifying-
dependencies.html#specifying-dependencies-from-git-repositories) by adding the following
section to the Cargo.toml file.

Import crate

At the top of main.rs we need to import the things we use from the macroquad_particles module.

Particle configuration

We’ll use the same configuration for all the explosions, and will only change the size based on the
sizes of the squares. Create a function that returns an EmitterConfig that can be used to create an
Emitter . The Emitter is a point from where particles can be generated.

cargo add macroquad-particles

macroquad-particles = "0.2.2"

[package]
name = "my-game"
version = "0.1.0"
edition = "2024"

See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]
macroquad = { version = "0.4" }

Bug in macroquad-particles

[patch.crates-io]
macroquad = { git = "https://github.com/not-fl3/macroquad" }
macroquad-particles = { git = "https://github.com/not-fl3/macroquad" }

use macroquad_particles::{self as particles, ColorCurve, Emitter, EmitterConfig};

54

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#specifying-dependencies-from-git-repositories
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#specifying-dependencies-from-git-repositories
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#specifying-dependencies-from-git-repositories

There are a lot of different things to configure in an Emitter . The fields of EmitterConfig
(https://docs.rs/macroquad-particles/latest/macroquad_particles/struct.EmitterConfig.html) are
described in the documentation of the module macroquad-particles .

Vector of explosions

We need another vector to keep track of all the explosions. It includes a tuple with an Emitter and
the coordinate it should be drawn at.

When we start a new game, we need to clear the vector of explosions.

fn particle_explosion() -> particles::EmitterConfig {
 particles::EmitterConfig {
 local_coords: false,
 one_shot: true,
 emitting: true,
 lifetime: 0.6,
 lifetime_randomness: 0.3,
 explosiveness: 0.65,
 initial_direction_spread: 2.0 * std::f32::consts::PI,
 initial_velocity: 300.0,
 initial_velocity_randomness: 0.8,
 size: 3.0,
 size_randomness: 0.3,
 colors_curve: ColorCurve {
 start: RED,
 mid: ORANGE,
 end: RED,
 },
 ..Default::default()
 }
}

Emitter API documentation

 let mut explosions: Vec<(Emitter, Vec2)> = vec![];

 explosions.clear();

 if is_key_pressed(KeyCode::Space) {
 squares.clear();
 bullets.clear();

 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 score = 0;
 game_state = GameState::Playing;
 }

55

https://docs.rs/macroquad-particles/latest/macroquad_particles/struct.EmitterConfig.html
https://docs.rs/macroquad-particles/latest/macroquad_particles/struct.EmitterConfig.html

Create an explosion

When a square is hit by a bullet, we’ll create a new Emitter based on the configuration from
particle_explosion() , with the addition that the number of particles is based on the size of the

square. The coordinates where the particles are generated should be the same as the coordinates of
the square.

Removing explosions

When the emitter has finished drawing all the particles, we need to remove them from the
explosions vector so that we stop trying to draw it. Add the following code below the code that

removes squares and bullets.

Drawing explosions

After drawing all the squares, we can loop through the explosions vector and draw them. We only
need to send in the coordinates where the particles will be generated, then the emitter will
randomize and move all the particles by itself.

It’s time to try the game to see if there are particle explosions when the squares get hit by bullets.

 explosions.push((
 Emitter::new(EmitterConfig {
 amount: square.size.round() as u32 * 2,
 ..particle_explosion()
 }),
 vec2(square.x, square.y),
));

 for square in squares.iter_mut() {
 for bullet in bullets.iter_mut() {
 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;
 score += square.size.round() as u32;
 high_score = high_score.max(score);

 }
 }
 }

 explosions.retain(|(explosion, _)| explosion.config.emitting);

 for (explosion, coords) in explosions.iter_mut() {
 explosion.draw(*coords);
 }

56

Read the documentation for EmitterConfig and try what happens if you change different
values. Can you add a particle system that shoots particles out the back of the circle so it looks
like a rocket exhaust?

Challenge: Rocket exhaust

57

Graphics
It’s time to add some graphics to our game to make it look more like a real game. We will do it in
three steps so that there won’t be too many changes at once. To begin with we’ll add code to load
textures directly in our main function and change the draw function in the game loop. In a later
chapter we will look at how to extract the texture loading into a separate function.

Before we make any code changes we need to download all necessary resources. Download this
package with graphics and sound and extract it to a directory called assets in the root directory of
your game.

Assets are available at this address: https://mq.agical.se/assets.zip

All the resources are public domain and are primarily from the website OpenGameArt.org
(https://opengameart.org/) which offers lots of different resources to develop games.

The file structure for your game should look like this:

Update web publishing

If you chose to setup web publishing of your game to GitHub Pages in the first chapter you will need
to update the file .github/workflows/deploy.yml to make sure the assets are included when
publishing.

The assets directory needs to be created:

.
├── Cargo.lock
├── Cargo.toml
├── README.md
├── assets
│ ├── 8bit-spaceshooter.ogg
│ ├── atari_games.ttf
│ ├── button_background.png
│ ├── button_clicked_background.png
│ ├── enemy-big.png
│ ├── enemy-medium.png
│ ├── enemy-small.png
│ ├── explosion.png
│ ├── explosion.wav
│ ├── laser-bolts.png
│ ├── laser.wav
│ ├── ship.png
│ └── window_background.png
└── src
 ├── main.rs
 └── starfield-shader.glsl

58

file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/assets.zip
https://opengameart.org/
https://opengameart.org/
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch1-first-program.html#publicera-p%C3%A5-webben-om-du-vill

The asset files need to be copied into the assets directory:

The complete deploy configuration should now look like this:

Commit your changes and push to GitHub and verify that the game still works on:

https://<your-github-account>.github.io/<repository-name> .

 mkdir -p ./deploy/assets

 cp -r assets/ ./deploy/

name: Build and Deploy
on:
 push:
 branches:
 - main # If your default branch is named something else, change this

permissions:
 contents: write
 pages: write

jobs:
 build-and-deploy:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@v2

 - name: Install Rust
 uses: actions-rs/toolchain@v1
 with:
 toolchain: stable
 target: wasm32-unknown-unknown
 override: true

 - name: Build
 run: cargo build --release --target wasm32-unknown-unknown

 - name: Prepare Deployment Directory
 run: |
 mkdir -p ./deploy/assets
 cp ./target/wasm32-unknown-unknown/release/my-game.wasm ./deploy/
 cp index.html ./deploy/
 cp -r assets/ ./deploy/

 - name: Deploy
 uses: peaceiris/actions-gh-pages@v3
 with:
 github_token: ${{ secrets.GITHUB_TOKEN }}
 publish_dir: ./deploy

59

Spaceship and bullets

To begin with we’ll add graphics for the spaceship that the player controls. It will be animated with
two different sprites and will also have different animations for when the spaceship moves to the
left or right. We’ll also add a texture with animation for the bullets that the spaceship shoots.

Implementation

Import

The animation support in Macroquad is considered an experimental feature. It might change in a
future version of Macroquad. It is not included in the prelude that we have imported, so we will have
to import it explicitly.

60

Import the structs AnimatedSprite and Animation at the top of main.rs file.

Configure assets directory

We need to start by defining where Macroquad should read the resources. We’ll use the function
set_pc_assets_folder() that takes the path to the assets directory relative to the root directory

of the game. This is needed for platforms that might place files in other places and also has the
added benefit that we don’t need to add the directory name for every file we load.

Add the following code in the main function above the game loop:

Load textures

Load the image files used for the animation textures of the ship and bullets. Use the function
load_texture() to load a texture, which takes the name of the file to load. This function is async,

because it supports loading files over HTTP in WebAssembly, so we need to call await to get the
result.

Since loading files can fail, this function will return a Result . We will call expect() on the result to
stop the program if it wasn’t possible to load the file. This can happen if the file is missing, or it has
wrong read permissions. On WebAssembly it is possible that the HTTP request failed.

After loading the texture we’ll set which kind of filter to use when scaling the texture using the
method set_filter() . We will use the filter FilterMode::Nearest because we want to keep the
pixelated look of the sprites. This needs to be done on every texture that is loaded. For high
resolution textures it would be better to use FilterMode::Linear which gives a linear scaling of the
texture.

We’ll load the file ship.png that contains the animations for the spaceship, and the file laser-
bolts.png that contains animations for two different kinds of bullets.

use macroquad::experimental::animation::{AnimatedSprite, Animation};

 set_pc_assets_folder("assets");

 let ship_texture: Texture2D = load_texture("ship.png").await.expect("Couldn't load
file");
 ship_texture.set_filter(FilterMode::Nearest);
 let bullet_texture: Texture2D = load_texture("laser-bolts.png")
 .await
 .expect("Couldn't load file");
 bullet_texture.set_filter(FilterMode::Nearest);

61

The images are returned as the struct Texture2D
(https://docs.rs/macroquad/latest/macroquad/texture/struct.Texture2D.html) that stores the
image data in GPU memory. The corresponding struct for images stored in CPU memory is
Image (https://docs.rs/macroquad/latest/macroquad/texture/struct.Image.html).

Build a texture atlas

After loading all the textures we’ll call the Macroquad function build_textures_atlas() that will
build an atlas containing all loaded textures. This will ensure that all calls to draw_texture() and
draw_texture_ex() will use the texture from the atlas instead of each separate texture, which is

much more efficient. All textures need to be loaded before this function is called.

Bullet animation

The image laser-bolts.png is composed of four sprites, in two rows.
These make up the animations for two different types of bullets. We will
name the first one bullet and the second one bolt . Each animation is
one row with two frames each and they should be shown at 12 frames
per second. The size of the sprites is 16x16 pixels.

Each animation in a spritesheet is placed in a separate row, with the
frames next to each other horizontally. Each Animation should have a
descriptive name, define which row in the spritesheet it is, how many
frames it has, and how many frames should be displayed each second.

Create an AnimatedSprite with the tile_width and tile_height set to 16 , and an array with an
Animation struct for each of the two rows in the spritesheet. The first one should be named
bullet and have the row 0 and the second one should have the name bolt and the row 1 . Both

should have frames set to 2 and fps set to 12 .

We will only use the second animation, so we’ll use the method set_animation() to define that we
will be using the animation on row 1 .

Texture2D and Image API

 build_textures_atlas();

62

https://docs.rs/macroquad/latest/macroquad/texture/struct.Texture2D.html
https://docs.rs/macroquad/latest/macroquad/texture/struct.Texture2D.html
https://docs.rs/macroquad/latest/macroquad/texture/struct.Image.html

Spaceship animation

The spritesheet for the spaceship is in the
image ship.png and we need to define how
the animations in the spritesheet should be
displayed. We have to create an
AnimatedSprite for the ship as well. The size

of each frame of the spaceship spritesheet is
16x24 pixels, so we’ll set tile_width to 16
and tile_height to 24 . After that is an array
with an Animation struct for each animation in
the spritesheet that we want to use.

There are five animations available in the
spritesheet, with the first one in the top row.
We will only use three of the spritesheet
animations in our AnimatedSprite , the second
and fourth row from the top in the spritesheet
are unused. The first one is used when flying
up or down, so add an Animation in the
AnimatedSprite with row defined as 0 as the

indexes are 0-based, and the name set to
idle . The ship will keep pointing up regardless

of if it moves up or down. The second
Animation is for moving the spaceship to the left, which will use the row with index 2 in the

spritesheet. Finally, the third Animation is used when moving the spaceship to the right, and has

 let mut bullet_sprite = AnimatedSprite::new(
 16,
 16,
 &[
 Animation {
 name: "bullet".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "bolt".to_string(),
 row: 1,
 frames: 2,
 fps: 12,
 },
],
 true,
);
 bullet_sprite.set_animation(1);

63

the row index 4 . There are two frames in each Animation and the fps should be set to 12
frames per second.

Finally we set playing to true so that the animation will be active.

Animate direction

For the spaceship we need to set which animation to use based on the direction movement. In the
code for moving the spaceship we will add a line where we use the method set_animation() on the
ship_sprite . We start by setting the animation to 0 if it isn’t turning in any direction, if it is moving

to the right we’ll set the animation to 2 , and if it moves to the left we’ll set the animation to 1 .
These numbers are indexes in the array of Animation structs we defined in the AnimatedSprite for
the spaceship, which means they are 0-based.

 let mut ship_sprite = AnimatedSprite::new(
 16,
 24,
 &[
 Animation {
 name: "idle".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "left".to_string(),
 row: 2,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "right".to_string(),
 row: 4,
 frames: 2,
 fps: 12,
 },
],
 true,
);

 ship_sprite.set_animation(0);

 ship_sprite.set_animation(2);

 ship_sprite.set_animation(1);

 if is_key_down(KeyCode::Right) {
 circle.x += MOVEMENT_SPEED * delta_time;
 direction_modifier += 0.05 * delta_time;

 }
 if is_key_down(KeyCode::Left) {
 circle.x -= MOVEMENT_SPEED * delta_time;
 direction_modifier -= 0.05 * delta_time;

 }

64

Change bullet size

Since the graphics for the bullets are larger than the tiny circle we used to draw for them, we need to
change the size and starting position when creating a bullet.

Update animations

In order for Macroquad to animate the textures, we need to call the method update() on every
sprite inside our game loop. Add the following two lines below the code that updates the positions
of enemies and bullets.

Draw bullet animations

Now we can use the function draw_texture_ex to draw each frame of the animation. Remove the
lines that draw a circle for each bullet and insert instead the code below. First we call the method
frame() on the bullet_sprite to get the current animation frame and set it to the variable
bullet_frame .

Inside the loop that draws all the bullets we’ll call draw_texture_ex to draw the bullet frame. It takes
the bullet_texture as argument, and an x and y position based on the size of the bullet. We also
add the struct DrawTextureParams with the fields dest_size and source_rect . The field
dest_size defines in which size the texture will be drawn, so we will use a Vec2 with the size of the

bullet for both x and y . Finally we’ll use bullet_frame.source_rect , which is a reference to where
in the texture the current frame is placed.

 y: circle.y - 24.0,

 size: 32.0,

 if is_key_pressed(KeyCode::Space) {
 bullets.push(Shape {
 x: circle.x,

 speed: circle.speed * 2.0,

 collided: false,
 });
 }

 ship_sprite.update();
 bullet_sprite.update();

 for square in &mut squares {
 square.y += square.speed * delta_time;
 }
 for bullet in &mut bullets {
 bullet.y -= bullet.speed * delta_time;
 }

65

By using DrawTextureParams
(https://docs.rs/macroquad/0.3.25/macroquad/texture/struct.DrawTextureParams.html) it is
possible to change how the texture should be drawn. It is possible to draw the texture rotated or
mirrored with the fields rotation , pivot , flip_x , and flip_y .

Draw the spaceship frames

Finally it’s time to replace the circle with the texture for the spaceship. It works in the same way as
for the bullets. First we’ll retrieve the current frame from the animation sprite, and then we’ll draw it
using draw_texture_ex() .

Because the spaceship animation isn’t the same size in width and height, we’ll use
ship_frame.dest_size to define which size should be drawn. To make it a bit bigger we’ll double

the size.

If everything works correctly, there should be animated graphics for both the spaceship and the
bullets when running the game.

 let bullet_frame = bullet_sprite.frame();

 draw_texture_ex(
 &bullet_texture,
 bullet.x - bullet.size / 2.0,
 bullet.y - bullet.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(bullet.size, bullet.size)),
 source: Some(bullet_frame.source_rect),
 ..Default::default()
 },

 for bullet in &bullets {

);
 }

Draw parameters

 let ship_frame = ship_sprite.frame();
 draw_texture_ex(
 &ship_texture,
 circle.x - ship_frame.dest_size.x,
 circle.y - ship_frame.dest_size.y,
 WHITE,
 DrawTextureParams {
 dest_size: Some(ship_frame.dest_size * 2.0),
 source: Some(ship_frame.source_rect),
 ..Default::default()
 },
);

66

https://docs.rs/macroquad/0.3.25/macroquad/texture/struct.DrawTextureParams.html
https://docs.rs/macroquad/0.3.25/macroquad/texture/struct.DrawTextureParams.html

Improve loading times

Adding the following snippet at the end of the Cargo.toml file will ensure that the assets are loaded
much faster when running on a desktop computer.

Try using the two extra spaceship animations to make the ship turn only slightly just when it
changes direction and then make it turn fully after a short time.

[profile.dev.package.'*']
opt-level = 3

Challenge: Turn animation

67

Graphical explosions

To make the explosions a bit more spectacular we will add graphical textures to the particles.

Implementation

Import

To begin with, we need to update the import of macroquad_particles and replace ColorCurve with
AtlasConfig .

use macroquad_particles::{self as particles, AtlasConfig, Emitter, EmitterConfig};

68

Update the particle configuration

We need to update the particle configuration for our particle_explosion so that it will use
AtlasConfig to make it use a texture to draw the particles instead of using the ColorCurve . We

also update the size and lifetime to work better with the graphics.

The AtlasConfig describes the layout of the spritesheet when animating particles with a texture.
The arguments to new() are n for columns, m for rows, and a range for start and end index of the
animation. Our spritesheet has five frames in a single row, and we want to use them all for our
animation, so we use the values 5 , 1 , and the range 0.. .

Load textures

Before the line that builds the texture atlas we need to load the texture
with the animation for the particle explosion. The file is called
explosion.png . Don’t forget to set the filter on the texture to
FilterMode::Nearest .

Add the texture

When we create the explosion, we need to add the texture to use. We’ll also update the number to
get a few more particles. We need to use the method clone() on the texture, which is efficient
since it is only a pointer to the texture.

 initial_velocity: 400.0,

 size: 16.0,

 atlas: Some(AtlasConfig::new(5, 1, 0..)),

fn particle_explosion() -> particles::EmitterConfig {
 particles::EmitterConfig {
 local_coords: false,
 one_shot: true,
 emitting: true,
 lifetime: 0.6,
 lifetime_randomness: 0.3,
 explosiveness: 0.65,
 initial_direction_spread: 2.0 * std::f32::consts::PI,

 initial_velocity_randomness: 0.8,

 size_randomness: 0.3,

 ..Default::default()
 }
}

 let explosion_texture: Texture2D = load_texture("explosion.png")
 .await
 .expect("Couldn't load file");
 explosion_texture.set_filter(FilterMode::Nearest);
 build_textures_atlas();

69

When the game is run, the explosions will be animated with the explosion image instead of colored
squares.

Change the values of EmitterConfig fields based on the size of the enemy that is hit.

 amount: square.size.round() as u32 * 4,
 texture: Some(explosion_texture.clone()),

 explosions.push((
 Emitter::new(EmitterConfig {

 ..particle_explosion()
 }),
 vec2(square.x, square.y),
));

Challenge: Bigger explosions

70

Animated enemies

The only thing left is to change the boring squares and replace them with some more exciting
graphics. This works the same as when animating the spaceship, we load a texture, create an
AnimatedSprite , and change how the enemies are drawn to the screen.

Implementation

Load the texture

Load the texutre enemy-small.png and set the filter mode to FilterMode::Nearest .

71

Create animation

Create an AnimatedSprite to describe the animations in the texture. It
is only one animation with two frames. The graphics for the small
enemy ships are 16x16 pixels, but the texture has one pixel gutter
between the frames to ensure that they don’t bleed into each other
when we scale the texture.

Update animation

The enemy sprites need to be updated, add a line with enemy_small_sprite.update(); after
updating the animations for the ship_sprite and the bullet_sprite .

Draw enemy frames

We can now change the drawing of squares to drawing the texture from the current frame of the
animation. Vi retrieve the frame from enemy_small_sprite and use the source_rect in
DrawTextureParams in the draw_texture_ex() call. Since the enemies have a randomized size, we’ll

use the size of the enemy when setting the dest_size and x and y coordinates.

 let enemy_small_texture: Texture2D = load_texture("enemy-small.png")
 .await
 .expect("Couldn't load file");
 enemy_small_texture.set_filter(FilterMode::Nearest);
 build_textures_atlas();

 let mut enemy_small_sprite = AnimatedSprite::new(
 17,
 16,
 &[Animation {
 name: "enemy_small".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 }],
 true,
);

 enemy_small_sprite.update();

 ship_sprite.update();
 bullet_sprite.update();

72

We have now changed to graphics for all the elements of the game, and when you run it now, it
should look like a real game.

The asset package includes two other
enemy spritesheets, enemy-medium.png
and enemey-big.png . Try changing
which texture is used for the enemies
based on their size.

 let enemy_frame = enemy_small_sprite.frame();

 draw_texture_ex(
 &enemy_small_texture,
 square.x - square.size / 2.0,
 square.y - square.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(square.size, square.size)),
 source: Some(enemy_frame.source_rect),
 ..Default::default()
 },
);

 for square in &squares {

 }

Challenge: Different enemies

73

Music and sound effects
A game doesn’t only need graphics to be good, it also needs to sound good. Let’s add some music
and sound effects to the game.

Implementation

Activate the sound feature

To be able to use sound in Macroquad we need to activate the audio feature. This is done by
adding audio to the list of features in the macroquad dependency in the Cargo.toml file.

Import

The sound module isn’t included the Macroquad prelude, so we need to import the audio module
at the top of the main.rs file. The things we need to import are load_sound , play_sound ,
play_sound_once , and PlaySoundParams .

Load resources

After all the textures have been loaded, we can load the music and sound effects. There is a file with
the music that is called 8bit-spaceshooter.ogg and two wav files with sound effects,
explosion.wav and laser.wav . The music is in the file format Ogg Vorbis which is supported by

most, but not all, web browsers.

macroquad = { version = "0.4", features = ["audio"] }

[package]
name = "my-game"
version = "0.1.0"
edition = "2024"

See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]

macroquad-particles = "0.2.2"

use macroquad::audio::{load_sound, play_sound, play_sound_once, PlaySoundParams};

74

In order for the music to work on the Safari web browser it has to be converted to WAV format.
This would make the file very large, so another option is to use a version in OGG format and one
in MP3 and select which one to use based on the web browser being used.

Play music

Before the game loop begins we will start playing the music. This is done with the function
play_sound() , which takes a sound, and the struct PlaySoundParams as arguments. In the

parameters we set the sound to be played in a loop and with full volume.

To stop the music use the function stop_sound() which takes the sound as argument.

Play laser sound

When the player is shooting a bullet, we will play the sound effect of a laser blast using the function
play_sound_once() . This function takes the sound to play as the argument. It is a shortcut instead

of using play_sound() with a non-looping parameter.

 let theme_music = load_sound("8bit-spaceshooter.ogg").await.unwrap();
 let sound_explosion = load_sound("explosion.wav").await.unwrap();
 let sound_laser = load_sound("laser.wav").await.unwrap();

Safari sounds

 play_sound(
 &theme_music,
 PlaySoundParams {
 looped: true,
 volume: 1.,
 },
);

Stop the music

 play_sound_once(&sound_laser);

 bullets.push(Shape {
 x: circle.x,
 y: circle.y - 24.0,
 speed: circle.speed * 2.0,
 size: 32.0,
 collided: false,
 });

75

It’s also possible to set the sound volume per sound using the function set_sound_volume()
which takes a sound and a number between 0 and 1 as argument.

Play explosion sound

When a bullet hits an enemy, we will play the explosion sound, also using the function
play_sound_once() .

You can now start the game, and it should play music and sound effects.

It might be a bit intense to start the music at full volume. Try setting the volume lower at the
start and increase it once the game starts. Maybe also try to stop the music when the player
pauses the game.

Turn up the volume

 play_sound_once(&sound_explosion);

 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;
 score += square.size.round() as u32;
 high_score = high_score.max(score);
 explosions.push((
 Emitter::new(EmitterConfig {
 amount: square.size.round() as u32 * 4,
 texture: Some(explosion_texture.clone()),
 ..particle_explosion()
 }),
 vec2(square.x, square.y),
));

 }

Challenge: Change the volume

76

Graphical menu

Macroquad has a built-in system to display a graphical user interface where the look can easily be
changed using PNG images. We will use this to create a graphical main menu for our game. There
will be quite a lot of code to define the look of the UI. However, once that is done, it is very easy to
use it.

The menu will have a window centered on the screen with the text “Main menu” in the title bar.
Inside the window there will be two buttons, one for “Play” and one for “Quit”. The UI will be built
using different kinds of widgets such as label , button , editbox , and combobox .

Implementation

To begin with we need to import what we need from the ui module.

77

Load resources

After loading the sounds we’ll load the font and images used for the UI. There is an image to create
the window, window_background.png , one image for the buttons, button_background.png , and
finally an image for when the button is pressed, button_clicked_background.png . The images are
loaded with the function load_image() and binary files with the function load_file() . Both
images and files are loaded asynchronously and may return errors. This means we will have to call
await and unwrap() to get the files. If we can’t load the files needed to display the main menu, we

can just exit the program immediately.

Create a skin

Before the game loop we need to define how our UI should look. We will build Style structs for the
window, buttons and texts. After that we will use the styles to create a Skin .

We use the function root_ui() that will draw widgets last in every frame using a default camera
and the coordinate system (0..screen_width(), 0..screen_height()) .

Window look

To build a style we use a StyleBuilder that has helper methods to define all parts of the style. We
get access to it by using the method style_builder() on root_ui() . The values that aren’t set will
use the same values as the default look.

We will use the method background() to set the image used to draw the window. After that we can
use background_margin() to define which parts of the image that shouldn’t change proportion
when the window changes size. This is used to ensure that the edges of the window will look good.

The method margin() is used to set margins for the content. These values can be negative to draw
content to the borders of the window.

use macroquad::ui::{hash, root_ui, Skin};

 let window_background = load_image("window_background.png").await.unwrap();
 let button_background = load_image("button_background.png").await.unwrap();
 let button_clicked_background =
load_image("button_clicked_background.png").await.unwrap();
 let font = load_file("atari_games.ttf").await.unwrap();

 let window_style = root_ui()
 .style_builder()
 .background(window_background)
 .background_margin(RectOffset::new(32.0, 76.0, 44.0, 20.0))
 .margin(RectOffset::new(0.0, -40.0, 0.0, 0.0))
 .build();

78

There are many more methods to define styles, these are described in the documentation for
Macroquad’s StyleBuilder
(https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.StyleBuilder.html)

Button look

In the definition for buttons we’ll use two images. Using background() we set the default image for
the button, and background_clicked() is used to set the image to be displayed while the button is
clicked on.

We need to set both background_margin() and margin() to be able to stretch the image to cover
the text inside the button. The look of the text is defined using the methods font() , text_color() ,
and font_size() .

Text look

Normal text displayed in the interface uses label_style . We will use the same font as for the
buttons, but in a slightly smaller font size.

Define a Skin

We can now create a Skin using window_style , button_style , and label_style . We won’t define
any other styles for the skin as we won’t be using them.

StyleBuilder API

 let button_style = root_ui()
 .style_builder()
 .background(button_background)
 .background_clicked(button_clicked_background)
 .background_margin(RectOffset::new(16.0, 16.0, 16.0, 16.0))
 .margin(RectOffset::new(16.0, 0.0, -8.0, -8.0))
 .font(&font)
 .unwrap()
 .text_color(WHITE)
 .font_size(64)
 .build();

 let label_style = root_ui()
 .style_builder()
 .font(&font)
 .unwrap()
 .text_color(WHITE)
 .font_size(28)
 .build();

79

https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.StyleBuilder.html
https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.StyleBuilder.html

We use push_skin() to define the current skin that is to be applied. We will only use one skin, but
to change between different looks between windows, it’s possible to use push_skin() and
pop_skin() .

We will also set the variable window_size to define the size of the window.

It’s possible to change the look of more parts of the UI. More information on how to do this can
be found in the documentation of the struct Skin
(https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.Skin.html).

Build the menu

We can now build a menu by drawing a window with two buttons and a heading. The content of the
GameState::MainMenu matching arm can be replaced with the code at the end of this chapter.

Start by creating a window using root_ui().window() . The function takes an argument that is
generated with the macro hash! , a position that we’ll calculate based on the window size and the
screen dimensions, and finally a Vec2 for the size of the window. Finally it takes a function that is
used to draw the content of the window.

Window title

In the window function we start by setting a title for the window with the widget Label that we can
create using ui.label() . The method takes two arguments, a Vec2 for the position of the label and
a string with the text to be displayed. It’s possible to set None as position, in which case the
placement will be relative to the previous widget. We will use a negative y position to place the text
within the title bar of the window.

It’s also possible to create widgets by instantiating a struct and using builder methods.

widgets::Button::new("Play").position(vec2(45.0, 25.0)).ui(ui);

 let ui_skin = Skin {
 window_style,
 button_style,
 label_style,
 ..root_ui().default_skin()
 };
 root_ui().push_skin(&ui_skin);
 let window_size = vec2(370.0, 320.0);

Macroquad Skin API

Widget builder methods

80

https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.Skin.html
https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.Skin.html

Buttons

After the label we’ll add a button to begin playing the game. The method ui.button() returns true
when the button is clicked. We will use this to set the GameState::Playing to start a new game.

Then we can create a button with the text “Quit” to exit the game.

There are many different widgets that can be used to create interfaces. The list of available
widgets can be found in the documentation of the struct Ui
(https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.Ui.html).

Try the game

When starting the game, a graphical menu will be shown where the player can choose to start a
game or quit the program.

 root_ui().window(
 hash!(),
 vec2(
 screen_width() / 2.0 - window_size.x / 2.0,
 screen_height() / 2.0 - window_size.y / 2.0,
),
 window_size,
 |ui| {
 ui.label(vec2(80.0, -34.0), "Main Menu");
 if ui.button(vec2(65.0, 25.0), "Play") {

 }
 if ui.button(vec2(65.0, 125.0), "Quit") {

 }
 },
);

 GameState::MainMenu => {

 squares.clear();
 bullets.clear();
 explosions.clear();
 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 score = 0;
 game_state = GameState::Playing;

 std::process::exit(0);

 }

Macroquad UI API

81

https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.Ui.html
https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.Ui.html

Try creating a Skin of your own from another image and make it possible to switch between the
skins while the game is running.

Challenge: Switch skins

82

Resources

We’re starting to get quite a lot of code in our main function so it’s time to refactor again to improve
the code structure a little.

We’ll start by moving all the loading of file assets to a struct. At the same time we will change all the
unwrap() and expect() calls to using the ? operator to handle error messages.

After that we will make use of a coroutine to load the resources in the background while also
displaying a message about loading resources on the screen.

Finally we will use a Storage struct to make the resources available in the code without having to
send them around to every function where they are needed.

83

Resources and errors
In this chapter we will refactor our code without adding any new functionality to the game. We do
this to build a foundation to be able to add a loading screen during the loading of resources in the
web version. We also want to be able to refactor all the drawing to be done by the structs. Finally we
will be able to move code away from our main function which is starting to get a bit hard to follow.

Implementation

Resources struct

We start by creating a new struct called Resources that will contain all the files we load from the file
system. Add it above the main function. The struct will have a field for every asset loaded.

Resources impl

Directly below the Resources struct we’ll add an implementation block for it. To begin with it will
only contain a new method that loads all the files and returns an instance of the struct if everything
went as expected. We’ll reuse the code that used to be in the main function to load all the files.

We’ll also store the UI Skin as a resource so we won’t have to return the font and all the images
used for it.

The difference in the code is that we’ve replaced all the unwrap() and expect() calls to use the ?
operator instead. Using this the error will be returned instead of exiting the program. This means we
will be able to handle the error in a single place in our main function if we want to. The error
message is an enum of the type macroquad::Error .

struct Resources {
 ship_texture: Texture2D,
 bullet_texture: Texture2D,
 explosion_texture: Texture2D,
 enemy_small_texture: Texture2D,
 theme_music: Sound,
 sound_explosion: Sound,
 sound_laser: Sound,
 ui_skin: Skin,
}

84

The errors available in Macroquad are documented in macroquad::Error
(https://docs.rs/macroquad/latest/macroquad/enum.Error.html).

Macroquad errors

85

https://docs.rs/macroquad/latest/macroquad/enum.Error.html
https://docs.rs/macroquad/latest/macroquad/enum.Error.html

impl Resources {
 async fn new() -> Result<Resources, macroquad::Error> {
 let ship_texture: Texture2D = load_texture("ship.png").await?;
 ship_texture.set_filter(FilterMode::Nearest);
 let bullet_texture: Texture2D = load_texture("laser-bolts.png").await?;
 bullet_texture.set_filter(FilterMode::Nearest);
 let explosion_texture: Texture2D = load_texture("explosion.png").await?;
 explosion_texture.set_filter(FilterMode::Nearest);
 let enemy_small_texture: Texture2D = load_texture("enemy-small.png").await?;
 enemy_small_texture.set_filter(FilterMode::Nearest);
 build_textures_atlas();

 let theme_music = load_sound("8bit-spaceshooter.ogg").await?;
 let sound_explosion = load_sound("explosion.wav").await?;
 let sound_laser = load_sound("laser.wav").await?;

 let window_background = load_image("window_background.png").await?;
 let button_background = load_image("button_background.png").await?;
 let button_clicked_background =
load_image("button_clicked_background.png").await?;
 let font = load_file("atari_games.ttf").await?;

 let window_style = root_ui()
 .style_builder()
 .background(window_background)
 .background_margin(RectOffset::new(32.0, 76.0, 44.0, 20.0))
 .margin(RectOffset::new(0.0, -40.0, 0.0, 0.0))
 .build();
 let button_style = root_ui()
 .style_builder()
 .background(button_background)
 .background_clicked(button_clicked_background)
 .background_margin(RectOffset::new(16.0, 16.0, 16.0, 16.0))
 .margin(RectOffset::new(16.0, 0.0, -8.0, -8.0))
 .font(&font)?
 .text_color(WHITE)
 .font_size(64)
 .build();
 let label_style = root_ui()
 .style_builder()
 .font(&font)?
 .text_color(WHITE)
 .font_size(28)
 .build();
 let ui_skin = Skin {
 window_style,
 button_style,
 label_style,
 ..root_ui().default_skin()
 };

 Ok(Resources {
 ship_texture,
 bullet_texture,
 explosion_texture,
 enemy_small_texture,
 theme_music,
 sound_explosion,

86

Returning errors

To keep things as simple as possible we’ll let our main function return a result that may be an error.
This means we can use the ? operator in the main function as well. If the main function returns an
error, the game will quit and the error message will be printed on the console.

The standard return value for the main function is () , which is the Rust unit type that can be used
if no value will be returned. Before when the function didn’t specify a return value, this was still
returned implicitly.

If the last expression in a function ends with a semi colon (;) the return value will be skipped and
() is returned instead.

If you want to know how the Rust unit type works you can find more information in the Rust unit
documentation (https://doc.rust-lang.org/std/primitive.unit.html).

Remove unwrap()

When loading the material for the shader we used to use the method unwrap() which we will now
change to the ? operator to return any error instead. This change is in the last line of the code
below.

 sound_laser,
 ui_skin,
 })
 }
}

async fn main() -> Result<(), macroquad::Error> {
#[macroquad::main("My game")]

The Rust unit type

)?;

 let material = load_material(
 ShaderSource::Glsl {
 vertex: VERTEX_SHADER,
 fragment: FRAGMENT_SHADER,
 },
 MaterialParams {
 uniforms: vec![
 UniformDesc::new("iResolution", UniformType::Float2),
 UniformDesc::new("direction_modifier", UniformType::Float1),
],
 ..Default::default()
 },

87

https://doc.rust-lang.org/std/primitive.unit.html
https://doc.rust-lang.org/std/primitive.unit.html
https://doc.rust-lang.org/std/primitive.unit.html

Load resources

We’ve finally reached the most interesting part of this chapter. It’s time to change the code that loads
file assets to instead instantiate our Resources struct. We add the result to the resources variable
that we can use later when we need to use a resource.

Note that we use await after the new() method as it is async. We also use the ? operator to
bubble up any errors.

Update resource usages

Now that we have loaded all the assets with the Resources struct we need to update all the places
that uses a resource so that they retrieve the asset from it instead. We basically just add
resources. in front of every resource name.

Game music

User interface

Now that we’ve saved the UI Skin in our Resources struct we only need to activate it using
root_ui().push_skin() . We can replace all the lines that builds the UI with a single line.

Laser sound

The laser sound needs to use the resources variable.

 let resources = Resources::new().await?;
 set_pc_assets_folder("assets");

 &resources.theme_music,
 play_sound(

 PlaySoundParams {
 looped: true,
 volume: 1.,
 },
);

 root_ui().push_skin(&resources.ui_skin);
 let window_size = vec2(370.0, 320.0);

88

Explosions

We need to update both the texture and the sound for the explosions.

Bullets

Update the call to drawing bullets to use the texture from resources .

Spaceship

The spaceship also needs to use the texture from resources .

 play_sound_once(&resources.sound_laser);

 if is_key_pressed(KeyCode::Space) {
 bullets.push(Shape {
 x: circle.x,
 y: circle.y - 24.0,
 speed: circle.speed * 2.0,
 size: 32.0,
 collided: false,
 });

 }

 texture:
Some(resources.explosion_texture.clone()),

 play_sound_once(&resources.sound_explosion);

 explosions.push((
 Emitter::new(EmitterConfig {
 amount: square.size.round() as u32 * 4,

 ..particle_explosion()
 }),
 vec2(square.x, square.y),
));

 &resources.bullet_texture,

 for bullet in &bullets {
 draw_texture_ex(

 bullet.x - bullet.size / 2.0,
 bullet.y - bullet.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(bullet.size, bullet.size)),
 source: Some(bullet_frame.source_rect),
 ..Default::default()
 },
);
 }

89

Enemies

When the enemies are drawn, we need to add resources as well.

That’s everything that needs to be changed this time. In this chapter we’ve created a struct that
contains all the loaded assets that we use when drawing textures and playing sounds.

Instead of just exiting the game when encountering an error you could try to display the error
message on the screen using the draw_text() function of Macroquad. Remember that the
program will then need to keep on running and do nothing but displaying the text.

 &resources.ship_texture,

 let ship_frame = ship_sprite.frame();
 draw_texture_ex(

 circle.x - ship_frame.dest_size.x,
 circle.y - ship_frame.dest_size.y,
 WHITE,
 DrawTextureParams {
 dest_size: Some(ship_frame.dest_size * 2.0),
 source: Some(ship_frame.source_rect),
 ..Default::default()
 },
);

 &resources.enemy_small_texture,

 for square in &squares {
 draw_texture_ex(

 square.x - square.size / 2.0,
 square.y - square.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(square.size, square.size)),
 source: Some(enemy_frame.source_rect),
 ..Default::default()
 },
);
 }

Challenge: Display errors

90

Try the game

The game should work exactly like before.

Sometimes the cargo dependencies can become out of sync. Some users have experienced this
in this chapter. The symptoms are that the buttons in the main menu starts to “glitch” and it
requires multiple clicks to press the buttons. A workaround for this issue is to rebuild all the
dependencies using cargo clean .

Cargo dependencies

91

Coroutines and Storage
When there are a lot of assets to load, it might take a while to load everything. This is especially true
for the WebAssembly version that loads files via HTTP in the browser on a slow internet connection.
In these cases we want to display a loading message on the screen instead of just having a
completely black screen.

To solve this we will use something called coroutines , which will emulate multitasking using the
event loop in the browser. For the desktop these will execute immediately instead. This can be used
to handle state machines and things that need to be evaluated over time. Using a coroutine we can
load all the resources in the background while also drawing to the screen.

Finally we will place the resources in the Macroquad storage that is a global persistent storage. It
can be used to save game configuration that needs to be available anywhere in the game code
without having to send the data around.

Both coroutines and storage are experimental features of Macroquad and the usage might
change in future versions.

Implementation

Importing

Let’s start by importing coroutines::start_coroutine and collections::storage from
Macroquad’s experimental namespace.

Create a new load method

Now we can create a load() method in the implementation block for the Resources struct. In this
method we’ll add the code that loads the assets using a coroutine and display a text message on the
screen showing that resources are being loaded.

The function start_coroutine takes an async block and returns a Coroutine . Inside the async
block we will instantiate the Resources struct that loads all the assets. After that we use the

Experimental features

use macroquad::experimental::collections::storage;
use macroquad::experimental::coroutines::start_coroutine;

92

storage::store() to save the resources in the Macroquad storage. This will ensure that we can
access the resources anywhere in the code.

Using the method is_done() on Coroutine we can check if the couroutune has finished running or
not. We add a loop that runs until is_done() returns true . While the coroutine is running we use
draw_text() to display a message on the screen. We also add 1 to 3 periods after the text using the

code ".".repeat(((get_time() * 2.) as usize) % 4) . We also need to use clear_background()
and next_frame.await inside the loop for everything to work properly.

More information about the Macroquad coroutines
(https://docs.rs/macroquad/latest/macroquad/experimental/coroutines/index.html) and storage
(https://docs.rs/macroquad/latest/macroquad/experimental/collections/storage/index.html) can
be found in the Macroquad documentation.

Loading assets

The call to loading resources needs to be updated to use the new load() method instead of using
new() directly. Since load() stores the resources in the Macroquad storage we will use
storage::get::<Resources>() to retrieve the resources.

 pub async fn load() -> Result<(), macroquad::Error> {
 let resources_loading = start_coroutine(async move {
 let resources = Resources::new().await.unwrap();
 storage::store(resources);
 });

 while !resources_loading.is_done() {
 clear_background(BLACK);
 let text = format!(
 "Loading resources {}",
 ".".repeat(((get_time() * 2.) as usize) % 4)
);
 draw_text(
 &text,
 screen_width() / 2. - 160.,
 screen_height() / 2.,
 40.,
 WHITE,
);
 next_frame().await;
 }

 Ok(())
 }

Coroutine and Storage API

93

https://docs.rs/macroquad/latest/macroquad/experimental/coroutines/index.html
https://docs.rs/macroquad/latest/macroquad/experimental/coroutines/index.html
https://docs.rs/macroquad/latest/macroquad/experimental/collections/storage/index.html
https://docs.rs/macroquad/latest/macroquad/experimental/collections/storage/index.html

Try the game

While the game is loading in a browser, the message “Loading resources…” will be shown on the
screen.

Make a loading spinner by including an image as bytes and draw it using the rotation field in
DrawTextureParams in the load() function instead of displaying text.

 Resources::load().await?;
 let resources = storage::get::<Resources>();

 set_pc_assets_folder("assets");

Challenge: Loading spinner

94

Release your game
Now that you have made a complete game, you need to release it so that others can play it. In the
following chapters are instructions on how to build your game for different platforms.

We’ll start by looking at how to build and package the game for the most common desktop
platforms: Windows, MacOS, and Linux. After that is a chapter on building the game to run on a web
page. We will also look at how to build and package the game for mobile platforms such as Android
and iPhone.

95

Build your game for desktop platforms
Macroquad supports multiple desktop platforms, such as Windows, MacOS, and Linux. It’s possible
to cross-compile for other platforms than the one you are using. But it might need other tools that
are not described in this guide. It’s easiest to use a build system that has support for different
platforms.

Build for Windows

If you want to build your game to be run on Windows you need to install a Rust build target. Both
the MSVC and GNU build targets are supported.

Build using Windows GNU target

Before running the build the for first time you need to install the build target. You will only have to
run this command once.

To build the game, use the following command:

The binary file created will be stored in the directory target/x86_64-pc-windows-gnu/release/ .

Build using Windows MSVC target

Before running the build the for first time you need to install the build target. You will only have to
run this command once.

To build the game, use the following command:

The binary file created will be stored in the directory target/x86_64-pc-windows-msvc/release/ .

rustup target add x86_64-pc-windows-gnu

cargo build --release --target x86_64-pc-windows-gnu

rustup target add x86_64-pc-windows-msvc

cargo build --release --target x86_64-pc-windows-msvc

96

Build for Linux

To build your game with Macroquad on Linux you will need a couple of development packages.
Below are a few instructions how to install these packages on some common Linux distributions.

Install packages

Ubuntu

These system packages must be installed to build on Ubuntu.

Fedora

These system packages must be installed to build on Fedora.

Arch Linux

These system packages must be installed to build on Arch Linux.

Build using Linux GNU target

Before running the build for the first time you need to install the build target. You will only have to
run this command once.

To build the game, use the following command:

The binary file created will be stored in the directory target/x86_64-unknown-linux-gnu/release/ .

apt install pkg-config libx11-dev libxi-dev libgl1-mesa-dev libasound2-dev

dnf install libX11-devel libXi-devel mesa-libGL-devel alsa-lib-devel

pacman -S pkg-config libx11 libxi mesa-libgl alsa-lib

rustup target add x86_64-unknown-linux-gnu

cargo build --release --target x86_64-unknown-linux-gnu

97

Build using MacOS

To build on MacOS there are two possible targets: x86_64-apple-darwin is used for older Intel-
based Mac computers, and aarch64-apple-darwin build is used for newer Apple Silicon-based Mac
computers.

Build using x86-64 Apple Darwin target

Before running the build for the first time you need to install the build target. You will only have to
run this command once.

To build the game, use the following command:

The binary file created will be stored in the directory target/x86_64-apple-darwin/release/ .

Build using aarch64 Apple Darwin target

Before running the build for the first time you need to install the build target. You will only have to
run this command once.

To build the game, use the following command:

The binary file created will be stored in the directory target/aarch64-apple-darwin/release/ .

Package the game

To share your game with others you need to package the game binary file together with all the
assets needed to run the game. Here are a couple of examples on how to do this using a terminal.

rustup target add x86_64-apple-darwin

cargo build --release --target x86_64-apple-darwin

rustup target add aarch64-apple-darwin

cargo build --release --target aarch64-apple-darwin

98

Windows

Linux

Mac

cp target/x86_64-pc-windows-gnu/release/my-game.exe ./
tar -c -a -f my-game-win.zip my-game.exe assets/*

cp target/x86_64-pc-linux-gnu/release/my-game ./
tar -zcf my-game-linux.zip my-game assets/*

cp target/aarch64-apple-darwin/release/my-game ./
zip -r my-game-mac.zip my-game assets/*

99

Publish your game on the web
Since you can compile a Macroquad game to WebAssembly it’s possible to run the game in a web
browser. These are instructions on how to create a web page to run your game. This web page can
be published on a web account so that people can play your game directly in the browser without
having to download anything.

Install WASM build target

Start by installing the build target for WebAssembly using the command rustup .

Build a WebAssembly binary

Using the WebAssembly target you can build a WASM binary file that can be loaded from a web
page.

The WASM binary file will be placed in the directory target/wasm32-unknown-unknown/release/ with
the extension .wasm .

Copy WebAssembly binary

You need to copy the WebAssembly binary to the root of your crate, in the same place where the
assets directory is placed.

If you have named your crate something else than my-game , the name of the binary will have the
same name, but with the file extension .wasm .

rustup target add wasm32-unknown-unknown

cargo build --release --target wasm32-unknown-unknown

cp target/wasm32-unknown-unknown/release/my-game.wasm .

100

Create an HTML page

You will need an HTML page to load the WebAssembly binary. It needs to load a Javascript file from
Macroquad which contains code to run the WebAssembly binary and communicate with the
browser. You also need to add a canvas element that Macroquad will use to draw the graphics.
Remember to change the name of the WebAssembly binary file in the load() call from my-
game.wasm to the name of your game if you have changed it.

Create a file with the name index.html in the root of your crate with the following content:

Test the game in a browser

You should be able to start a web server and open the game in a web browser.

Install a simple web server

This is only to be able to test the game locally before you upload it to a proper web hosting account.
To serve your game locally on your computer you can install a simple web server with the following
command:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <title>My Game</title>
 <style>
 html,
 body,
 canvas {
 margin: 0;
 padding: 0;
 width: 100%;
 height: 100%;
 overflow: hidden;
 position: absolute;
 background: black;
 z-index: 0;
 }
 </style>
</head>
<body>
 <canvas id="glcanvas" tabindex='1'></canvas>
 <!-- Minified and statically hosted version of https://github.com/not-
fl3/macroquad/blob/master/js/mq_js_bundle.js -->
 <script src="https://not-fl3.github.io/miniquad-samples/mq_js_bundle.js"></script>
 <script>load("my-game.wasm");</script> <!-- Your compiled WASM binary -->
</body>
</html>

101

Run the web server

This command will start the web server and print an address where you can reach the web page.
Open your web browser and load the URL, this will be something similar to http://localhost:4000 .
The game should now run in your browser instead of as a native application.

Publish your game

If you have access to a web hosting account, you can publish the files there to let other people play
your game. You need to upload the HTML file, the WASM file, and the assets directory.

This is a reminder that there are instructions at the end of chapter 1 on how to automatically
publish the game on GitHub without using a web account. In that case you need to use the
updated deploy.yml from chapter 10 – Graphics.

cargo install basic-http-server

basic-http-server .

index.html
my-game.wasm
assets/*

Publish automatically

102

file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch1-first-program.html#publish-on-the-web-if-you-want
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch11-graphics.html#update-web-publishing

Build for Android phones
Using Macroquad it’s possible to build your game to be run on Android phones. We will build an APK
file that can be installed on Android phones or added to the Google Play store. We’ll describe how to
build the game using Docker (https://www.docker.com/get-started/), so you need to have that
installed to continue.

Since mobile platforms don’t have physical keyboards you will also have to add support for
controlling the game using touch controls.

Read about the function touches() in the Macroquad documentation
(https://docs.rs/macroquad/latest/macroquad/input/index.html) for more information on how
touch controls work.

Install the Docker image

Before you build an APK file for Android you need to pull the Docker image notfl3/cargo-apk .

Build the APK file

Using this command you can build an APK file. It will take quite some time since it will do three full
builds, one for each Android target.

After this you will have an APK file in the directory target/android-artifacts/release/apk .

Macroquad touch API

docker pull notfl3/cargo-apk

docker run
 --rm
 -v $(pwd):/root/src
 -w /root/src
 notfl3/cargo-apk cargo quad-apk build --release

103

https://www.docker.com/get-started/
https://www.docker.com/get-started/
https://docs.rs/macroquad/latest/macroquad/input/index.html
https://docs.rs/macroquad/latest/macroquad/input/index.html

Configuration

To ensure that Android can find all the assets, you need to add some configuration to the
Cargo.toml file to define where the assets can be found.

On the Macroquad homepage there are more detailed instructions on how to build for Android
(https://macroquad.rs/articles/android/). It has tips on how to speed up the build, how to build
manually without Docker, and how to sign the APK file which is needed to upload it to the Google
Play Store.

[package.metadata.android]
assets = "assets/"

Detailed Android instructions

104

https://macroquad.rs/articles/android/
https://macroquad.rs/articles/android/

Build for iOS
You can build your Macroquad game to run on iPhone mobile phones and iPads.

You’ll notice that the game isn’t fully adapted to be run on a mobile platform yet. To start with
you can read about the function touches() in the Macroquad documentation
(https://docs.rs/macroquad/latest/macroquad/input/index.html) or more information about how
touch interfaces work.

More detailed information on how to build for iOS is available in the article Macroquad on iOS
(https://macroquad.rs/articles/ios/) on the Macroquad homepage. There you can find
information on how to access logs, building for real devices, and signing your app.

Create a directory

An iOS app is a regular directory with the file extension .app .

For our game, the directory structure in the MyGame.app directory is the same as when we run the
game with cargo run from the root of the crate. The binary file and assets directory should be
placed next to each other. You also need an Info.plist file.

Start by adding the assets .

Build the binary

You need to add the Rust target for iOS. For the simulator you should use Intel binaries and for the
real devices you should use ARM binaries. This guide will only cover how to try the game in the
simulator. How to try the game on a real device is covered in the Macroquad on iOS
(https://macroquad.rs/articles/ios/) article on the Macroquad homepage.

Adapt to mobile

Detailed iOS instructions

mkdir MyGame.app

cp -r assets MyGame.app

105

https://docs.rs/macroquad/latest/macroquad/input/index.html
https://docs.rs/macroquad/latest/macroquad/input/index.html
https://macroquad.rs/articles/ios/
https://macroquad.rs/articles/ios/
https://macroquad.rs/articles/ios/
https://macroquad.rs/articles/ios/

After this you can build an executable binary for the iOS Simulator using the following command:

Copy the binary file

Copy the executable binary file to the game directory.

Create Info.plist

Create a text file for the app metadata with the name Info.plist in the MyGame.app directory with
the following content:

Setup the simulator

For this step you need to have XCode and at least one simulator image installed. You’ll find XCode in
the App Store app. You can add simulators via the command line or via XCode. In version 15.1 of
XCode you can do it via Settings... → Platforms and then choose between the available iOS
versions. There is also a button (+) to add more iOS versions.

rustup target add x86_64-apple-ios

cargo build --release --target x86_64-apple-ios

cp target/x86_64-apple-ios/release/my-game MyGame.app

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleExecutable</key>
<string>my-game</string>
<key>CFBundleIdentifier</key>
<string>com.mygame</string>
<key>CFBundleName</key>
<string>mygame</string>
<key>CFBundleVersion</key>
<string>1</string>
<key>CFBundleShortVersionString</key>
<string>1.0</string>
</dict>
</plist>

106

To add simulators via the command line you first need to run the command xcrun simctl list to
get a list of all the available simulators. Copy the hex code for the simulator you want and use it as
argument to the xcrun simctl boot command. You only need to do this the first time you run the
simulator.

Run the simulator

The command we’ll use to install and run the game, xcrun simctl , chooses a simulator with the
argument booted . This means that you first need to start a simulator and to make things
predictable, you should only run one simulator at a time. This can also be done using the terminal,
but the easiest way is to start the Simulator app and then start the simulator you want via File →
Open Simulator .

To start the simulator using the terminal, use the following command:

Install the game

You can install the game by dragging the directory MyGame.app and dropping it on the running
simulator. But since you probably want to reinstall it multiple times it is more efficient to use the
terminal with this command:

Start the game

This can be done using the running simulator or via the terminal. In our Info.plist file we
specified CFBundleIdentifier as com.mygame , which we will use to start the game.

xcrun simctl list
xcrun simctl boot <hex string>

open /Applications/Xcode.app/Contents/Developer/Applications/Simulator.app/

xcrun simctl install booted MyGame.app/

xcrun simctl launch booted com.mygame

107

The end

You have now developed and published a simple game written in the programming language Rust
and the game library Macroquad. While there is still a lot to be done to make it into a complete
game, you should now have a solid foundation to improve the game further.

Ideas for improvement

Here are some ideas on how to improve the game to make it more fun to play:

Add more enemies with different movements and graphics
Add life to enemies so bigger enemies needs to shot multiple times before they are destroyed
Allow enemies to shoot bullets or drop bombs themselves
Make enemies show up in waves instead of just randomly
Add levels with increasing difficulty
Upgrades that improve the weapons or add different types of weapons
Add big boss enemies at the end of levels
Extra lives
Add health and display a health bar
Add an upgrade with a shield around the spaceship
Store the top ten scores and add a highscore screen
Use macroquad-tiled (https://github.com/not-fl3/macroquad/tree/master/tiled) to make a level
with graphical background
Add a shop between levels to buy upgrades
Make the spaceship invulnerable and blinking for a short while after resurrection
Look at the Macroquad post processing (https://github.com/not-
fl3/macroquad/blob/master/examples/post_processing.rs) example on how to add a CRT
shader
Use the font from the graphical menu chapter for all texts in the game
Show a victory sequence at the end of each level
Support two simultaneous players

108

https://github.com/not-fl3/macroquad/tree/master/tiled
https://github.com/not-fl3/macroquad/tree/master/tiled
https://github.com/not-fl3/macroquad/blob/master/examples/post_processing.rs
https://github.com/not-fl3/macroquad/blob/master/examples/post_processing.rs
https://github.com/not-fl3/macroquad/blob/master/examples/post_processing.rs
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch13-menu-ui.html

Other resources

These are some other resources for the Macroquad game library.

Macroquad (https://macroquad.rs) – The official homepage of Macroquad
Awesome Quads (https://github.com/ozkriff/awesome-quads) – A curated list of Macroquad
games and resources
Quads discord server (https://discord.gg/WfEp6ut) – The official Macroquad community
Rust game ports (https://github.com/rust-gamedev/rust-game-ports) – Official host of games
ported using Rust game libraries

Game showcase

If you have completed this game guide and published your game online, you can have your game
showcased on this page. You can open a PR (https://github.com/ollej/macroquad-
introduktion/blob/main/macroquad-introduction-book-english/src/wrapup.md) in the GitHub
repository and add a link to your game in the list below.

My first Macroquad game (https://pez.github.io/my-first-macroquad-game/) by Pez
(https://www.github.com/pez)
Implementation with Bevy ECS (https://github.com/ddmills/macroquad-book) by ddmills
(https://github.com/ddmills)

109

https://macroquad.rs/
https://macroquad.rs/
https://github.com/ozkriff/awesome-quads
https://github.com/ozkriff/awesome-quads
https://discord.gg/WfEp6ut
https://discord.gg/WfEp6ut
https://github.com/rust-gamedev/rust-game-ports
https://github.com/rust-gamedev/rust-game-ports
https://github.com/ollej/macroquad-introduktion/blob/main/macroquad-introduction-book-english/src/wrapup.md
https://github.com/ollej/macroquad-introduktion/blob/main/macroquad-introduction-book-english/src/wrapup.md
https://github.com/ollej/macroquad-introduktion/blob/main/macroquad-introduction-book-english/src/wrapup.md
https://pez.github.io/my-first-macroquad-game/
https://pez.github.io/my-first-macroquad-game/
https://www.github.com/pez
https://www.github.com/pez
https://github.com/ddmills/macroquad-book
https://github.com/ddmills/macroquad-book
https://github.com/ddmills
https://github.com/ddmills

Full source code
This is the full source code of the completed game.

use macroquad::audio::{Sound, load_sound, play_sound, play_sound_once,
PlaySoundParams};
use macroquad::experimental::animation::{AnimatedSprite, Animation};
use macroquad::experimental::collections::storage;
use macroquad::experimental::coroutines::start_coroutine;
use macroquad::prelude::*;
use macroquad::ui::{hash, root_ui, Skin};
use macroquad_particles::{self as particles, AtlasConfig, Emitter, EmitterConfig};

use std::fs;

const FRAGMENT_SHADER: &str = include_str!("starfield-shader.glsl");

const VERTEX_SHADER: &str = "#version 100
attribute vec3 position;
attribute vec2 texcoord;
attribute vec4 color0;
varying float iTime;

uniform mat4 Model;
uniform mat4 Projection;
uniform vec4 _Time;

void main() {
 gl_Position = Projection * Model * vec4(position, 1);
 iTime = _Time.x;
}
";

struct Shape {
 size: f32,
 speed: f32,
 x: f32,
 y: f32,
 collided: bool,
}

impl Shape {
 fn collides_with(&self, other: &Self) -> bool {
 self.rect().overlaps(&other.rect())
 }

 fn rect(&self) -> Rect {
 Rect {
 x: self.x - self.size / 2.0,
 y: self.y - self.size / 2.0,
 w: self.size,
 h: self.size,
 }
 }
}

110

enum GameState {
 MainMenu,
 Playing,
 Paused,
 GameOver,
}

fn particle_explosion() -> particles::EmitterConfig {
 particles::EmitterConfig {
 local_coords: false,
 one_shot: true,
 emitting: true,
 lifetime: 0.6,
 lifetime_randomness: 0.3,
 explosiveness: 0.65,
 initial_direction_spread: 2.0 * std::f32::consts::PI,
 initial_velocity: 400.0,
 initial_velocity_randomness: 0.8,
 size: 16.0,
 size_randomness: 0.3,
 atlas: Some(AtlasConfig::new(5, 1, 0..)),
 ..Default::default()
 }
}

struct Resources {
 ship_texture: Texture2D,
 bullet_texture: Texture2D,
 explosion_texture: Texture2D,
 enemy_small_texture: Texture2D,
 theme_music: Sound,
 sound_explosion: Sound,
 sound_laser: Sound,
 ui_skin: Skin,
}

impl Resources {
 async fn new() -> Result<Resources, macroquad::Error> {
 let ship_texture: Texture2D = load_texture("ship.png").await?;
 ship_texture.set_filter(FilterMode::Nearest);
 let bullet_texture: Texture2D = load_texture("laser-bolts.png").await?;
 bullet_texture.set_filter(FilterMode::Nearest);
 let explosion_texture: Texture2D = load_texture("explosion.png").await?;
 explosion_texture.set_filter(FilterMode::Nearest);
 let enemy_small_texture: Texture2D = load_texture("enemy-small.png").await?;
 enemy_small_texture.set_filter(FilterMode::Nearest);
 build_textures_atlas();

 let theme_music = load_sound("8bit-spaceshooter.ogg").await?;
 let sound_explosion = load_sound("explosion.wav").await?;
 let sound_laser = load_sound("laser.wav").await?;

 let window_background = load_image("window_background.png").await?;
 let button_background = load_image("button_background.png").await?;
 let button_clicked_background =
load_image("button_clicked_background.png").await?;
 let font = load_file("atari_games.ttf").await?;

111

 let window_style = root_ui()
 .style_builder()
 .background(window_background.clone())
 .background_margin(RectOffset::new(32.0, 76.0, 44.0, 20.0))
 .margin(RectOffset::new(0.0, -40.0, 0.0, 0.0))
 .build();
 let button_style = root_ui()
 .style_builder()
 .background(button_background.clone())
 .background_clicked(button_clicked_background.clone())
 .background_margin(RectOffset::new(16.0, 16.0, 16.0, 16.0))
 .margin(RectOffset::new(16.0, 0.0, -8.0, -8.0))
 .font(&font)?
 .text_color(WHITE)
 .font_size(64)
 .build();
 let label_style = root_ui()
 .style_builder()
 .font(&font)?
 .text_color(WHITE)
 .font_size(28)
 .build();
 let ui_skin = Skin {
 window_style,
 button_style,
 label_style,
 ..root_ui().default_skin()
 };

 Ok(Resources {
 ship_texture,
 bullet_texture,
 explosion_texture,
 enemy_small_texture,
 theme_music,
 sound_explosion,
 sound_laser,
 ui_skin,
 })
 }

 pub async fn load() -> Result<(), macroquad::Error> {
 let resources_loading = start_coroutine(async move {
 let resources = Resources::new().await.unwrap();
 storage::store(resources);
 });

 while !resources_loading.is_done() {
 clear_background(BLACK);
 let text = format!(
 "Loading resources {}",
 ".".repeat(((get_time() * 2.) as usize) % 4)
);
 draw_text(
 &text,
 screen_width() / 2. - 160.,
 screen_height() / 2.,
 40.,
 WHITE,

112

);
 next_frame().await;
 }

 Ok(())
 }
}

#[macroquad::main("My game")]
async fn main() -> Result<(), macroquad::Error> {
 const MOVEMENT_SPEED: f32 = 200.0;

 rand::srand(miniquad::date::now() as u64);
 let mut squares = vec![];
 let mut bullets: Vec<Shape> = vec![];
 let mut circle = Shape {
 size: 32.0,
 speed: MOVEMENT_SPEED,
 x: screen_width() / 2.0,
 y: screen_height() / 2.0,
 collided: false,
 };
 let mut score: u32 = 0;
 let mut high_score: u32 = fs::read_to_string("highscore.dat")
 .map_or(Ok(0), |i| i.parse::<u32>())
 .unwrap_or(0);
 let mut game_state = GameState::MainMenu;

 let mut direction_modifier: f32 = 0.0;
 let render_target = render_target(320, 150);
 render_target.texture.set_filter(FilterMode::Nearest);
 let material = load_material(
 ShaderSource::Glsl {
 vertex: VERTEX_SHADER,
 fragment: FRAGMENT_SHADER,
 },
 MaterialParams {
 uniforms: vec![
 UniformDesc::new("iResolution", UniformType::Float2),
 UniformDesc::new("direction_modifier", UniformType::Float1),
],
 ..Default::default()
 },
)?;

 let mut explosions: Vec<(Emitter, Vec2)> = vec![];

 set_pc_assets_folder("assets");
 Resources::load().await?;
 let resources = storage::get::<Resources>();

 let mut bullet_sprite = AnimatedSprite::new(
 16,
 16,
 &[
 Animation {
 name: "bullet".to_string(),
 row: 0,
 frames: 2,

113

 fps: 12,
 },
 Animation {
 name: "bolt".to_string(),
 row: 1,
 frames: 2,
 fps: 12,
 },
],
 true,
);
 bullet_sprite.set_animation(1);
 let mut ship_sprite = AnimatedSprite::new(
 16,
 24,
 &[
 Animation {
 name: "idle".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "left".to_string(),
 row: 2,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "right".to_string(),
 row: 4,
 frames: 2,
 fps: 12,
 },
],
 true,
);
 let mut enemy_small_sprite = AnimatedSprite::new(
 17,
 16,
 &[Animation {
 name: "enemy_small".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 }],
 true,
);

 play_sound(
 &resources.theme_music,
 PlaySoundParams {
 looped: true,
 volume: 1.,
 },
);

 root_ui().push_skin(&resources.ui_skin);
 let window_size = vec2(370.0, 320.0);

114

 loop {
 clear_background(BLACK);

 material.set_uniform("iResolution", (screen_width(), screen_height()));
 material.set_uniform("direction_modifier", direction_modifier);
 gl_use_material(&material);
 draw_texture_ex(
 &render_target.texture,
 0.,
 0.,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(screen_width(), screen_height())),
 ..Default::default()
 },
);
 gl_use_default_material();

 match game_state {
 GameState::MainMenu => {
 root_ui().window(
 hash!(),
 vec2(
 screen_width() / 2.0 - window_size.x / 2.0,
 screen_height() / 2.0 - window_size.y / 2.0,
),
 window_size,
 |ui| {
 ui.label(vec2(80.0, -34.0), "Main Menu");
 if ui.button(vec2(65.0, 25.0), "Play") {
 squares.clear();
 bullets.clear();
 explosions.clear();
 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 score = 0;
 game_state = GameState::Playing;
 }
 if ui.button(vec2(65.0, 125.0), "Quit") {
 std::process::exit(0);
 }
 },
);
 }
 GameState::Playing => {
 let delta_time = get_frame_time();
 ship_sprite.set_animation(0);
 if is_key_down(KeyCode::Right) {
 circle.x += MOVEMENT_SPEED * delta_time;
 direction_modifier += 0.05 * delta_time;
 ship_sprite.set_animation(2);
 }
 if is_key_down(KeyCode::Left) {
 circle.x -= MOVEMENT_SPEED * delta_time;
 direction_modifier -= 0.05 * delta_time;
 ship_sprite.set_animation(1);
 }
 if is_key_down(KeyCode::Down) {

115

 circle.y += MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Up) {
 circle.y -= MOVEMENT_SPEED * delta_time;
 }
 if is_key_pressed(KeyCode::Space) {
 bullets.push(Shape {
 x: circle.x,
 y: circle.y - 24.0,
 speed: circle.speed * 2.0,
 size: 32.0,
 collided: false,
 });
 play_sound_once(&resources.sound_laser);
 }
 if is_key_pressed(KeyCode::Escape) {
 game_state = GameState::Paused;
 }

 // Clamp X and Y to be within the screen
 circle.x = clamp(circle.x, 0.0, screen_width());
 circle.y = clamp(circle.y, 0.0, screen_height());

 // Generate a new square
 if rand::gen_range(0, 99) >= 95 {
 let size = rand::gen_range(16.0, 64.0);
 squares.push(Shape {
 size,
 speed: rand::gen_range(50.0, 150.0),
 x: rand::gen_range(size / 2.0, screen_width() - size / 2.0),
 y: -size,
 collided: false,
 });
 }

 // Movement
 for square in &mut squares {
 square.y += square.speed * delta_time;
 }
 for bullet in &mut bullets {
 bullet.y -= bullet.speed * delta_time;
 }

 ship_sprite.update();
 bullet_sprite.update();
 enemy_small_sprite.update();

 // Remove shapes outside of screen
 squares.retain(|square| square.y < screen_height() + square.size);
 bullets.retain(|bullet| bullet.y > 0.0 - bullet.size / 2.0);

 // Remove collided shapes
 squares.retain(|square| !square.collided);
 bullets.retain(|bullet| !bullet.collided);

 // Remove old explosions
 explosions.retain(|(explosion, _)| explosion.config.emitting);

 // Check for collisions

116

 if squares.iter().any(|square| circle.collides_with(square)) {
 if score == high_score {
 fs::write("highscore.dat", high_score.to_string()).ok();
 }
 game_state = GameState::GameOver;
 }
 for square in squares.iter_mut() {
 for bullet in bullets.iter_mut() {
 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;
 score += square.size.round() as u32;
 high_score = high_score.max(score);
 explosions.push((
 Emitter::new(EmitterConfig {
 amount: square.size.round() as u32 * 4,
 texture:
Some(resources.explosion_texture.clone()),
 ..particle_explosion()
 }),
 vec2(square.x, square.y),
));
 play_sound_once(&resources.sound_explosion);
 }
 }
 }

 // Draw everything
 let bullet_frame = bullet_sprite.frame();
 for bullet in &bullets {
 draw_texture_ex(
 &resources.bullet_texture,
 bullet.x - bullet.size / 2.0,
 bullet.y - bullet.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(bullet.size, bullet.size)),
 source: Some(bullet_frame.source_rect),
 ..Default::default()
 },
);
 }
 let ship_frame = ship_sprite.frame();
 draw_texture_ex(
 &resources.ship_texture,
 circle.x - ship_frame.dest_size.x,
 circle.y - ship_frame.dest_size.y,
 WHITE,
 DrawTextureParams {
 dest_size: Some(ship_frame.dest_size * 2.0),
 source: Some(ship_frame.source_rect),
 ..Default::default()
 },
);
 let enemy_frame = enemy_small_sprite.frame();
 for square in &squares {
 draw_texture_ex(
 &resources.enemy_small_texture,
 square.x - square.size / 2.0,

117

 square.y - square.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(square.size, square.size)),
 source: Some(enemy_frame.source_rect),
 ..Default::default()
 },
);
 }
 for (explosion, coords) in explosions.iter_mut() {
 explosion.draw(*coords);
 }
 draw_text(
 format!("Score: {}", score).as_str(),
 10.0,
 35.0,
 25.0,
 WHITE,
);
 let highscore_text = format!("High score: {}", high_score);
 let text_dimensions = measure_text(highscore_text.as_str(), None, 25,
1.0);
 draw_text(
 highscore_text.as_str(),
 screen_width() - text_dimensions.width - 10.0,
 35.0,
 25.0,
 WHITE,
);
 }
 GameState::Paused => {
 if is_key_pressed(KeyCode::Escape) {
 game_state = GameState::Playing;
 }
 let text = "Paused";
 let text_dimensions = measure_text(text, None, 50, 1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 WHITE,
);
 }
 GameState::GameOver => {
 if is_key_pressed(KeyCode::Space) {
 game_state = GameState::MainMenu;
 }
 let text = "GAME OVER!";
 let text_dimensions = measure_text(text, None, 50, 1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 RED,
);
 }
 }

118

 next_frame().await
 }
}

119

Credits

Ferris the Gamer

The image of Ferris holding a game controller is adapted from the “Ferris the Rustacean” public
domain image created by Karen Rustad Tölva (https://www.rustacean.net/). The game controller is
drawn by Clovis_Cheminot from Pixabay (https://pixabay.com/vectors/controller-video-game-flat-x-
box-1486898/) and released under the Pixabay Content License.

Ferris the Teacher

The image Ferris the Teacher (https://www.behance.net/gallery/89117181/Ferris-the-professional) is
made by Esther Arzola (https://www.behance.net/estherarzola) licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/deed.en).

Starfield shader

The starfield shader is created by The Art of Code and taken from the video Shader Coding: Making a
starfield (https://youtu.be/rvDo9LvfoVE). License: Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License.

120

https://www.rustacean.net/
https://www.rustacean.net/
https://pixabay.com/vectors/controller-video-game-flat-x-box-1486898/
https://pixabay.com/vectors/controller-video-game-flat-x-box-1486898/
https://pixabay.com/vectors/controller-video-game-flat-x-box-1486898/
https://www.behance.net/gallery/89117181/Ferris-the-professional
https://www.behance.net/gallery/89117181/Ferris-the-professional
https://www.behance.net/estherarzola
https://www.behance.net/estherarzola
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://youtu.be/rvDo9LvfoVE
https://youtu.be/rvDo9LvfoVE
https://youtu.be/rvDo9LvfoVE

Asset credits

Sprites

Space Ship Shooter Pixel Art Assets
Author: ansimuz
License: CC0 Public Domain
https://opengameart.org/content/space-ship-shooter-pixel-art-assets
(https://opengameart.org/content/space-ship-shooter-pixel-art-assets)

Theme music

8-bit space shooter music
Author: HydroGene
License: CC0 Public Domain
https://opengameart.org/content/8-bit-epic-space-shooter-music
(https://opengameart.org/content/8-bit-epic-space-shooter-music)

Laser and explosion sounds

Sci-fi sounds
Author: Kenney.nl
License: CC0 Public Domain
https://opengameart.org/content/sci-fi-sounds (https://opengameart.org/content/sci-fi-sounds)

UI

Sci-fi User Interface Elements
Author: Buch
License: CC0 Public Domain
sci-fi-ui.psd
https://opengameart.org/content/sci-fi-user-interface-elements
(https://opengameart.org/content/sci-fi-user-interface-elements)

Font

AtariGames
Author: Kieran
License: Public Domain
https://nimblebeastscollective.itch.io/nb-pixel-font-bundle (https://nimblebeastscollective.itch.io/nb-
pixel-font-bundle)

121

https://opengameart.org/content/space-ship-shooter-pixel-art-assets
https://opengameart.org/content/space-ship-shooter-pixel-art-assets
https://opengameart.org/content/8-bit-epic-space-shooter-music
https://opengameart.org/content/8-bit-epic-space-shooter-music
https://opengameart.org/content/sci-fi-sounds
https://opengameart.org/content/sci-fi-sounds
https://opengameart.org/content/sci-fi-user-interface-elements
https://opengameart.org/content/sci-fi-user-interface-elements
https://nimblebeastscollective.itch.io/nb-pixel-font-bundle
https://nimblebeastscollective.itch.io/nb-pixel-font-bundle
https://nimblebeastscollective.itch.io/nb-pixel-font-bundle

Glossary
This is a list of terms and abbreviations used in this guide.

Word Definition

APK Android package is a file format to distribute mobile apps for the Android OS

camera A virtual camera used to project a 3D world on a 2D screen

cargo The package manager for Rust

Docker A tool to run applications in isolated containers

enum A Rust feature, to enumerate its possible variants

GitHub A developer platform to create, store, manage, and share code

GLSL OpenGL Shading Language executed on the GPU

GNU A mass collaboration project that creates free software

GPU
Graphics processing unit, an electronic circuit specialized to accelerate computer
graphics

Javascript A programming language that can run in web browsers

Macroquad A game library to write games with Rust

Miniquad A small Rust graphics library used by Macroquad

MP3 A sound file format

MSVC Microsoft Visual C++ compiler

Ogg Vorbis A sound file format

OGG The filename extension for Ogg Vorbis sound files

particle
system A computer graphics technique using many small sprites to simulate visual effects

PNG An image file format

PR
Pull requests are a way to propose changes to code in a distributed version control
system

Rust A programming language

shader A small program that runs on the GPU

sprite A fixed-size 2D image used as a part of a larger scene

Struct A Rust custom data type, used to structure related values

terminal A program used to run text commands

texture An image stored in the GPU memory

Vec2 A 2-dimensional vector

Vector A Rust collection that can store a variable number of values

Vsync Vertical sync ensures the monitor displays every frame the GPU renders

WASM Abbreviation of WebAssembly

WebAssembly A binary instruction format that can run in web browsers

XCode An IDE by Apple to develop software for their platforms

122

