
Copyright © 2024 by Olle Wreede

Licensed under CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/

This license enables reusers to distribute, remix, adapt, and build upon the
material in any medium or format, so long as attribution is given to the creator.

The license allows for commercial use. If you remix, adapt, or build upon the
material, you must license the modified material under identical terms. CC BY-SA

includes the following elements:

BY: credit must be given to the creator.
SA: Adaptations must be shared under the same terms.

First edition July 2024

https://mq.agical.se

1

https://creativecommons.org/licenses/by-sa/4.0/
https://mq.agical.se/

Table of contents
Copyright
Table of contents
Game development in Rust with Macroquad

Your first Macroquad app
Fly away
Smooth movement
Falling squares
Collision
Bullet hell
Points
Game state
Starfield shader
Particle explosions
Graphics

Spaceship and bullets
Graphical explosions
Animated enemies

Music and sound effects
Graphical menu
Resources

Resources and errors
Coroutines and Storage

Release your game
Build for desktop
Build for the web
Build for Android
Build for iOS

The end

Full source code
Credits Glossary

2

file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/copyright.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/SUMMARY.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/README.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch1-first-program.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch2-move-a-circle.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch3-smooth-movement.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch4-falling-squares.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch5-collision.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch6-shooting.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch7-points-system.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch8-game-state.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch9-starfield-shader.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch10-particle-explosions.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch11-graphics.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch11-1-spaceship-and-bullets.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch11-2-explosions.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch11-3-enemies.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch12-audio.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch13-menu-ui.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch14-resources.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch14-1-resources-and-errors.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch14-2-coroutines-and-storage.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-game.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-desktop.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-web.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-android.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-ios.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/wrapup.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/full-source.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/credits.html
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/glossary.html

Game development in Rust with
Macroquad

This guide is written by Olle Wreede at Agical.

This guide is available online at the following address: https://mq.agical.se/

The source code for all chapters of this book is available here:
https://mq.agical.se/github.html

3

https://www.agical.se/
https://mq.agical.se/github.html

Game development guide

In this guide we will be developing a game from scratch. In each chapter we will
add a small feature to the game that explains a part of the Macroquad library. In
the beginning the game will be very simple, but at the end of the guide you will
have built a complete game with graphics and sound. You will be able to build the
game for desktop computers, the web, as well as mobile devices.

The game we are making is a classic shoot ’em up where the player controls a
spaceship that has to shoot down enemies flying down from the top of the screen.

At the end of every chapter there is a short quiz that shows you how much you’ve
learned. The answers are anonymous and are not stored anywhere.

This is Ferris, the teacher who will show up at the end of every chapter to give
you an extra challenge. Doing the challenge is optional; you can continue to the
next chapter without it.

Challenge

4

The Macroquad game library

Macroquad is a game library for the programming language Rust. It includes
everything you need to develop a 2D game. The main advantage of Macroquad
compared with other game libraries is that it works with many different platforms.
Since it has very few dependencies it also compiles very fast.

With Macroquad it’s possible to develop games for desktop operating systems like
Windows, Mac, and Linux. It also has support to compile for mobile devices like iOS
and Android. Thanks to the WebAssembly support it can also be compiled to run in
a web browser. All this can be done without having to write any platform specific
code.

The library has efficient 2D rendering support, and some rudimentary 3D features.
It also includes a simple immediate UI library to make graphical game interfaces.

This guide assumes some prior knowledge of Rust programming. More
information about Rust is available in the Rust book that is available online. I can
also recommend the book Hands-on Rust by Herbert Wolverson where you learn
Rust by writing a roguelike game.

On the Macroquad homepage there are examples of how different features of
Macroquad work, Macroquad-related articles, and documentation of the API.

This guide is written for version 0.4 of Macroquad. It may not work for future
versions because Macroquad is under active development.

Info

Note

5

https://doc.rust-lang.org/book/
https://pragprog.com/titles/hwrust/hands-on-rust/
https://macroquad.rs/
https://macroquad.rs/examples/
https://macroquad.rs/articles
https://docs.rs/macroquad/latest/macroquad/

PDF book

This guide is also available as a downloadable PDF book.

Game development with Macroquad by Olle Wreede is licensed under
CC BY-SA 4.0

6

file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/pdf/output.pdf
http://macroquad-introduction.agical.se/
https://olle.wreede.se/
https://creativecommons.org/licenses/by-sa/4.0/?ref=chooser-v1

Your first Macroquad app

Now it’s time to develop your first application with Macroquad. Start by installing
the programming language Rust if you don’t already have it.

Implementation

Create a new Rust project using the Cargo command line tool and add macroquad
with version 0.4 as a dependency. If you want, you can give your game a more

7

interesting name than “my-game”.

Your Cargo.toml file should now look like this:

Open the file src/main.rs in your favorite text editor and change the content to
look like this:

Run your application with cargo run , and a new window with a dark purple
background will open once the compilation has finished.

cargo new --bin my-game
cd my-game/
cargo add macroquad@0.4

[package]
name = "my-game"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]
macroquad = "0.4"

use macroquad::prelude::*;

#[macroquad::main("My game")]
async fn main() {
 loop {
 clear_background(DARKPURPLE);
 next_frame().await
 }
}

8

Description of the application

The first line is used to import everything you need from Macroquad. This is most
easily done by importing macroquad::prelude::* , but it is also possible to import
only the features that are used.

The attribute #[macroquad::main("My game")] is used to tell Macroquad which
function will be run when the application starts. When the application is started, a
window will open with the argument as the title, and the function will be executed
asynchronously. If you have named your game something more interesting you
should change the text `My game´ to the name of your game.

To change the configuration for the window, such as the size or whether it
should start in fullscreen mode, you can use the struct Conf instead of the
string as an argument.

Inside the main function there is a loop that never ends. All the game logic will be
placed inside this game loop and will be executed in every frame. In our case we
clear the background of the window with a dark purple color with the function
clear_background(DARKPURPLE) . At the end of the loop is the function
next_frame().await which will wait until the next frame is available.

Even if clear_background() isn’t used explicitly, the screen will be cleared with
a black color at the start of each frame.

Info

Note

9

https://docs.rs/macroquad/latest/macroquad/window/struct.Conf.html

Try changing the background of the window to your favorite color.

Challenge

10

Publish on the web (if you want)

One of the big advantages with Rust and Macroquad is that it is very easy to
compile a standalone application for different platforms. How this works will be
explained in a later chapter of this guide. If you want, you can setup a GitHub
deploy action to publish a web version of the game every time you commit.

When you created the game with cargo new a local Git repository was also
created. Start by committing your changes locally. After that you can create a
repository on GitHub and push the code there.

The two files below refer to my-game.wasm . If you’ve changed the name of your
crate to something other than my-game you need to change those references.

You need an HTML file to show the game. Create a file called index.html in the
root of the project/crate and add the following content:

Note

11

file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/release-game.html

The following GitHub Actions Workflow will compile the game to WASM and put all
files in place so that the game will work on the web. Place the code in
.github/workflows/deploy.yml .

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>My Game</title>
 <style>
 html,
 body,
 canvas {
 margin: 0;
 padding: 0;
 width: 100%;
 height: 100%;
 overflow: hidden;
 position: absolute;
 background: black;
 z-index: 0;
 }
 </style>
</head>
<body>
 <canvas id="glcanvas" tabindex='1'></canvas>
 <!-- Minified and statically hosted version of
https://github.com/not-fl3/macroquad/blob/master/js/mq_js_bundle.js -->
 <script src="https://not-fl3.github.io/miniquad-
samples/mq_js_bundle.js"></script>
 <script>load("my-game.wasm");</script> <!-- Your compiled WASM
binary -->
</body>
</html>

12

Commit and push! You can follow the build under the Actions page of the
repository. The first time you push your code the game will be built and all files
placed in the correct place, in the root of the branch gh-pages , but no web page

name: Build and Deploy
on:
 push:
 branches:
 - main # If your default branch is named something else, change
this

permissions:
 contents: write
 pages: write

jobs:
 build-and-deploy:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@v2

 - name: Install Rust
 uses: actions-rs/toolchain@v1
 with:
 toolchain: stable
 target: wasm32-unknown-unknown
 override: true

 - name: Build
 run: cargo build --release --target wasm32-unknown-unknown

 - name: Prepare Deployment Directory
 run: |
 mkdir -p ./deploy
 cp ./target/wasm32-unknown-unknown/release/my-game.wasm
./deploy/
 cp index.html ./deploy/

 - name: Deploy
 uses: peaceiris/actions-gh-pages@v3
 with:
 github_token: ${{ secrets.GITHUB_TOKEN }}
 publish_dir: ./deploy

13

will be created. You need to change a configuration of the GitHub repository under
Settings > Pages > Build and deployment. Set gh-pages as the branch from
which to deploy the web page.

When the build is done you will be able to play your game on https://<your-
github-account>.github.io/<repository-name> .

It won’t be much of game yet, only a purple background. But you have delivered
early, and the project is configured for continuous delivery. Every time you add
functionality to the game and push the code to GitHub, you will be able to play the
latest version of the game on the web. In the next chapter things will start to move!

14

Fly away

A game is not much fun without something happening on the screen. To begin
with, we will show a circle that we can steer with the arrow keys on the keyboard.

Implementation

The first two lines of the main function uses the functions screen_width() and
screen_height() to get the width and height of the application window. These

values are divided by 2 to get the coordinates of the center of the window, and
stored in the variables x and y . These variables will be used to decide where to
draw the circle on the screen.

Handle keyboard input

Inside the main loop we will still clear the background as it should be done in each
frame. After that there are four if statements that check if any of the arrow keys

 let mut x = screen_width() / 2.0;
 let mut y = screen_height() / 2.0;

15

on the keyboard has been pressed. The variables x and y are changed to move
the circle in the corresponding direction.

The function is_key_down() returns true if the given key is being pressed during
the current frame. The argument is of the enum KeyCode that contains all keys
available on the keyboard.

You can read more about how the Rust enum feature works in the Rust book.

You can find other available keys in the documentation of KeyCode.

Draw a circle

Finally we will draw a circle on the screen at the coordinates in x and y . The circle
has a radius of 16 and will be drawn in a yellow color.

Info

 if is_key_down(KeyCode::Right) {
 x += 1.0;
 }
 if is_key_down(KeyCode::Left) {
 x -= 1.0;
 }
 if is_key_down(KeyCode::Down) {
 y += 1.0;
 }
 if is_key_down(KeyCode::Up) {
 y -= 1.0;
 }

Info

 draw_circle(x, y, 16.0, YELLOW);

16

https://doc.rust-lang.org/book/ch06-00-enums.html
https://docs.rs/macroquad/latest/macroquad/input/enum.KeyCode.html

Macroquad has several constants for common colors, and you can also use the
macro color_u8 to create a color with specific values for red, green, blue, and
transparency.

The other shapes that can be drawn with Macroquad are described in the
documentation of Macroquad’s Shape API.

Change the value added to x and y to define how fast the circle will move.

Info

Challenge

17

https://docs.rs/macroquad/latest/macroquad/color/colors/index.html
https://docs.rs/macroquad/latest/macroquad/macro.color_u8.html
https://docs.rs/macroquad/latest/macroquad/shapes/index.html

Source

The source of main.rs should look like this:

When you run the game, a yellow circle will appear in the middle of the window.
Try using the arrow keys to move the circle around.

use macroquad::prelude::*;

#[macroquad::main("My game")]
async fn main() {
 let mut x = screen_width() / 2.0;
 let mut y = screen_height() / 2.0;

 loop {
 clear_background(DARKPURPLE);

 if is_key_down(KeyCode::Right) {
 x += 1.0;
 }
 if is_key_down(KeyCode::Left) {
 x -= 1.0;
 }
 if is_key_down(KeyCode::Down) {
 y += 1.0;
 }
 if is_key_down(KeyCode::Up) {
 y -= 1.0;
 }

 draw_circle(x, y, 16.0, YELLOW);

 next_frame().await
 }
}

18

Smooth movement

Since Macroquad will draw frames as quickly as possible, we need to check how
much time has passed between each update to determine how far the circle
should move. Otherwise, our game will run at different speeds on different
computers, depending on how quickly they can run the application. The specific
framerate will depend on your computer; if Vsync is enabled it may be locked to 30
or 60 frames per second.

Implementation

We will expand the application and add a constant that determines how quickly the
circle should move. We call the constant MOVEMENT_SPEED and assign the value
200.0 . If the circle moves too fast or too slow, we can decrease or increase this

value.

 const MOVEMENT_SPEED: f32 = 200.0;

19

Time between frames

Now we will use the function get_frame_time() to get the time in seconds that
has passed since the last frame. We assign this value to a variable called
delta_time that we will use later.

Update movement

When the variables x and y are updated, we will multiply the values of the
constant MOVEMENT_SPEED by the variable delta_time to get how far the circle
should move during this frame.

Limit movement

Finally, we will prevent the circle from moving outside of the window. We use the
Macroquad function clamp() to make sure x and y are never below 0 or above
the width of the window.

 let delta_time = get_frame_time();

 x += MOVEMENT_SPEED * delta_time;

 x -= MOVEMENT_SPEED * delta_time;

 y += MOVEMENT_SPEED * delta_time;

 y -= MOVEMENT_SPEED * delta_time;

 if is_key_down(KeyCode::Right) {

 }
 if is_key_down(KeyCode::Left) {

 }
 if is_key_down(KeyCode::Down) {

 }
 if is_key_down(KeyCode::Up) {

 }

 x = clamp(x, 0.0, screen_width());
 y = clamp(y, 0.0, screen_height());

20

The clamp() function is used to clamp a value between a minimum and
maximum value. It is part of the Macroquad Math API.

Change the constant MOVEMENT_SPEED if the circle is moving too slow or too
fast.

What do you need to change to ensure that the entire circle stays within the
window when the position is clamped?

Info

Challenge

21

https://docs.rs/macroquad/latest/macroquad/math/index.html

Source

The code should now look like this:

use macroquad::prelude::*;

#[macroquad::main("My game")]
async fn main() {
 const MOVEMENT_SPEED: f32 = 200.0;

 let mut x = screen_width() / 2.0;
 let mut y = screen_height() / 2.0;

 loop {
 clear_background(DARKPURPLE);

 let delta_time = get_frame_time();
 if is_key_down(KeyCode::Right) {
 x += MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Left) {
 x -= MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Down) {
 y += MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Up) {
 y -= MOVEMENT_SPEED * delta_time;
 }

 x = clamp(x, 0.0, screen_width());
 y = clamp(y, 0.0, screen_height());

 draw_circle(x, y, 16.0, YELLOW);
 next_frame().await
 }
}

22

Falling squares

To make sure there is something happening in our game, it’s time to create some
action. Since the hero in our game is a brave circle, our opponents will be squares
falling down from the top of the window.

Implementation

Struct for shapes

To keep track of our circle and all the squares, we’ll create a struct that we can
name Shape , which will contain the size and speed, as well as x and y
coordinates.

struct Shape {
 size: f32,
 speed: f32,
 x: f32,
 y: f32,
}

23

Initialize random number generator

We’ll use a random number generator to determine when new squares should
appear on the screen, how big they should be and how fast they will move.
Therefore, we need to seed the random generator so that it doesn’t produce the
same random numbers every time. This is done at the beginning of the main
function using the rand::srand() method, to which we pass the current time as
the seed.

We are using the function miniquad::date::now() from the graphics library
Miniquad to get the current time.

Vector of squares

At the beginning of the main function we create a vector called squares that will
contain all the squares to be displayed on the screen. The new variable circle will
represent our hero, the amazing circle. The speed uses the constant
MOVEMENT_SPEED , and the x and y fields are set to the center of the screen.

Start by modifying the program so that circle is used instead of the variables x
and y and confirm that everything works as it did before adding the enemy
squares.

 rand::srand(miniquad::date::now() as u64);

Note

 let mut squares = vec![];
 let mut circle = Shape {
 size: 32.0,
 speed: MOVEMENT_SPEED,
 x: screen_width() / 2.0,
 y: screen_height() / 2.0,
 };

24

https://docs.rs/miniquad/latest/miniquad/index.html
https://docs.rs/miniquad/latest/miniquad/index.html

The Rust compiler might warn about “type annotations needed” on the Vector.
Once we add an enemy square in the next section that warning should
disappear.

Add enemy squares

It’s time to start the invasion of evil squares. Here, just like before, we split
updating the movement and drawing the squares. This way, the movement does
not depend on the screen’s refresh rate, ensuring that all changes are done before
we start drawing anything to the screen.

First, we use the function rand::gen_range() to determine whether to add a new
square. It takes two arguments, a minimum value and a maximum value, and
returns a random number between those two values. We generate a random
number between 0 and 99, and if the value is 95 or higher, a new Shape is created
and added to the squares vector. To add some variation, we also use
rand::gen_range() to get different size, speed, and starting position of every

square.

Note

 if rand::gen_range(0, 99) >= 95 {
 let size = rand::gen_range(16.0, 64.0);
 squares.push(Shape {
 size,
 speed: rand::gen_range(50.0, 150.0),
 x: rand::gen_range(size / 2.0, screen_width() - size /
2.0),
 y: -size,
 });
 }

25

Rectangles are drawn starting from their upper left corner. Therefore, we
subtract half of the square’s size when calculating the x position. The y
position starts at a negative value of the square’s size, so it starts completely
outside the screen.

Update square positions

Now we can iterate through the vector using a for loop and update the Y position
using the square’s speed and the variable delta_time . This will make the squares
move downwards across the screen.

Remove invisible squares

Next, we need to clean up all the squares that have moved off the bottom of the
screen since it’s unnecessary to draw things that are not visible. We’ll use the
retain() method on the vector, which takes a function that determines whether

elements should be kept. We’ll check if the square’s y value is still less than the
height of the window plus the size of the square.

Note

 for square in &mut squares {
 square.y += square.speed * delta_time;
 }

 squares.retain(|square| square.y < screen_height() +
square.size);

26

Draw the squares

Finally, we add a for loop that iterates over the squares vector and uses the
function draw_rectangle() to draw a rectangle at the updated position and with
the correct size. Since rectangles are drawn with x and y from the top-left corner
and our coordinates are based on the center of the square, we use some
mathematics to calculate where they should be placed. The size is used twice, once
for the width of the square and once for the height. We set the color to GREEN so
that all squares will have a green color.

It’s also possible to use the function draw_rectangle_ex() that uses the struct
DrawTextureParams instead of a color. In addition to setting color, it can be

used to set rotation and offset of the rectangle.

Note

 for square in &squares {
 draw_rectangle(
 square.x - square.size / 2.0,
 square.y - square.size / 2.0,
 square.size,
 square.size,
 GREEN,
);
 }

27

https://docs.rs/macroquad/latest/macroquad/shapes/fn.draw_rectangle_ex.html
https://docs.rs/macroquad/latest/macroquad/shapes/struct.DrawRectangleParams.html

Try setting a different color for each square by using the method choose() on
vectors from Macroquad’s ChooseRandom trait, which returns a random
element from the vector.

Challenge

28

https://docs.rs/macroquad/latest/macroquad/rand/trait.ChooseRandom.html

Collisions

To make the game more exciting, let’s add some conflict. If our hero, the brave
yellow circle, collides with a square, the game will be over and has to be restarted.

After we have drawn the circle and all squares, we’ll add a check to see if any
square touches the circle. If it does, we’ll display the text “ GAME OVER! ” in capital
letters and wait for the player to press the space key. When the player presses
space, we’ll reset the vector with squares and move the circle back to the center of
the screen.

Implementation

Collision function

We expand the Shape struct with an implementation that contains the method
collides_with() to check if it collides with another Shape . This method uses the
overlaps() helper method from Macroquad’s Rect struct. We also create a

helper method called rect() that creates a Rect from our Shape.

29

https://docs.rs/macroquad/latest/macroquad/math/struct.Rect.html

There are many methods on Rect to do calculations on rectangles, such as
contains() , intersect() , scale() , combine_with() and move_to() .

The origin of Macroquad’s Rect is also from the top left corner, so we must
subtract half its size from both X and Y .

Is it game over?

Let’s add a boolean variable called gameover to the start of the main loop to keep
track of whether the player has died.

Since we don’t want the circle and squares to move while it’s game over, the
movement code is wrapped in an if statement that checks if the gameover

Info

impl Shape {
 fn collides_with(&self, other: &Self) -> bool {
 self.rect().overlaps(&other.rect())
 }

 fn rect(&self) -> Rect {
 Rect {
 x: self.x - self.size / 2.0,
 y: self.y - self.size / 2.0,
 w: self.size,
 h: self.size,
 }
 }
}

Note

 let mut gameover = false;

30

variable is false .

Collision

After the movement code, we add a check if any square collides with the circle. We
use the method any() on the iterator for the vector squares and check if any
square collides with our hero circle. If a collision occurs, we set the variable
gameover to true.

The collision code assumes that the circle is a square. Try writing code that
takes into account that the circle does not entirely fill the square.

 if !gameover {
 ...
 }

 if squares.iter().any(|square| circle.collides_with(square)) {
 gameover = true;
 }

Challenge

31

Reset the game

If the gameover variable is true and the player has just pressed the space key, we
clear the vector squares using the clear() method and reset the x and y
coordinates of circle to the center of the screen. Then, we set the variable
gameover to false so that the game can start over.

The difference between the functions is_key_down() and is_key_pressed()
is that the latter only checks if the key was pressed during the current frame,
while the former returns true for all frames from when the button was pressed
and then held down. An experiment you can do is to use is_key_pressed() to
control the circle.

There’s also a function called is_key_released() which checks if the key was
released during the current frame.

Display GAME OVER

Finally, we draw the text “Game Over!” in the middle of the screen after the circle
and squares have been drawn, but only if the variable gameover is true .
Macroquad does not have any feature to decide which things will be drawn on top
of other things. Each thing drawn will be drawn on top of all other things drawn
earlier during the the same frame.

 if gameover && is_key_pressed(KeyCode::Space) {
 squares.clear();
 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 gameover = false;
 }

Info

32

It’s also possible to use the function draw_text_ex() which takes a
DrawTextParams struct instead of font_size and color . Using that struct it’s

possible to set more parameters such as font , font_scale ,
font_scale_aspect and rotation .

Since draw_text() is based on the text’s baseline, the text won’t appear
exactly in the center of the screen. Try using the offset_y and height fields
from text_dimensions to calculate the text’s midpoint. Macroquad’s example
text measures can provide tips on how it works.

Info

 if gameover {
 let text = "GAME OVER!";
 let text_dimensions = measure_text(text, None, 50, 1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 RED,
);
 }

Challenge

33

https://docs.rs/macroquad/latest/macroquad/text/fn.draw_text_ex.html
https://docs.rs/macroquad/latest/macroquad/text/struct.TextParams.html
https://github.com/not-fl3/macroquad/blob/master/examples/text_measures.rs

Bullet hell

It is slightly unfair that our poor circle isn’t able to defend itself against the
terrifying squares. So it’s time to implement the ability for the circle to shoot
bullets.

Implementation

Dead or alive?

To keep track of which squares have been hit by bullets we add the field collided
of the type bool to the struct Shape .

 collided: bool,

struct Shape {
 size: f32,
 speed: f32,
 x: f32,
 y: f32,

}

34

Keeping track

We need another vector to keep track of all the bullets. For simplicity’s sake we’ll
call it bullets . Add it after the squares vector. Here we’ll also set the type of the
elements to ensure that the Rust compiler knows what type it is before we have
added anything to it. We’ll use the struct Shape for the bullets as well.

Shoot bullets

After the circle has moved we’ll add a check if the player has pressed the space key
and add a bullet to the bullets vector. The x and y coordinates of the bullet are
set to the same values as for the circle, and the speed is set to twice that of the
circle.

Note that we’re using the function is_key_pressed() which only returns true
during the frame when the key was first pressed.

Since we added a new field to the Shape struct we’ll need to set it when we create
a square.

 let mut bullets: Vec<Shape> = vec![];

 if is_key_pressed(KeyCode::Space) {
 bullets.push(Shape {
 x: circle.x,
 y: circle.y,
 speed: circle.speed * 2.0,
 size: 5.0,
 collided: false,
 });
 }

Note

35

Move bullets

We don’t want the bullets to be stationary mines, so we’ll have to loop over the
bullets vector and move them in the y direction. Add the following code after

the code that moves the squares.

Remove bullets and squares

Make sure to remove the bullets that have exited the screen in the same way that
the squares are removed.

Now it is time to remove all the squares and bullets that have collided. It can be
done with the retain method on the vectors which takes a predicate that should
return true if the element should be kept. We’ll just check whether the collided
field on the struct is false. Do the same thing for both the squares and the
bullets vectors.

 collided: false,

 squares.push(Shape {
 size,
 speed: rand::gen_range(50.0, 150.0),
 x: rand::gen_range(size / 2.0, screen_width() -
size / 2.0),
 y: -size,

 });

 for bullet in &mut bullets {
 bullet.y -= bullet.speed * delta_time;
 }

 for square in &mut squares {
 square.y += square.speed * delta_time;
 }

 bullets.retain(|bullet| bullet.y > 0.0 - bullet.size /
2.0);

36

Collision

After the check if the circle has collided with a square we’ll add another check if any
of the squares have been hit by a bullet. We’ll set the field collided to true for
both the square and the bullet so that they can be removed.

Clear bullets

When the game is over we also have to clear the bullets vector so that all the
bullets are removed when a new game is started.

Draw bullets

Before the circle is drawn we’ll draw all the bullets that the player has shot. This
ensures that they are drawn behind all the other shapes.

 squares.retain(|square| !square.collided);
 bullets.retain(|bullet| !bullet.collided);

 for square in squares.iter_mut() {
 for bullet in bullets.iter_mut() {
 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;
 }
 }
 }

 bullets.clear();

 if gameover && is_key_pressed(KeyCode::Space) {
 squares.clear();

 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 gameover = false;
 }

37

The is another function called draw_circle_lines() that can be used to draw
a circle with just the outline.

This is all the code that is needed for the circle to be able to shoot down all the
fearsome squares.

To increase the difficulty it’s possible to add a minimum time for reloading
between each shot. Try using the function get_time() to save when the last
shot was fired and compare it with the current time. Only add a bullet if the
difference is above a certain threshold.

Another possibility is to only allow a specific number of bullets on the screen at
the same time.

 for bullet in &bullets {
 draw_circle(bullet.x, bullet.y, bullet.size / 2.0, RED);
 }

Info

Challenge

38

https://docs.rs/macroquad/latest/macroquad/shapes/fn.draw_circle_lines.html
https://docs.rs/macroquad/latest/macroquad/time/fn.get_time.html

Points

What is a game without points and a high score? Now that the circle can shoot
down the squares it is time to add some points. Every square that is shot down will
add to the score, where bigger squares will be worth more points. The current
score will be shown on the screen, as well as the highest score achieved.

Bigger squares could be worth more because they contain more resources.
Later on they could be made harder to destroy by being able to take more
bullets hits.

If the current score is the highest score when the game is over, it will be written to
a file on disk so that it can be read each time the game is started. This will only
work if the game is played on desktop as the WebAssembly version doesn’t have
access to the file system. It would be possible to store the high score in the
browser storage, but that won’t be covered here to keep the implementation
simple.

Info

39

Implementation

Import module

To be able to read and write files we need to import std::fs modul from the Rust
standard library. Add this line directly below the line to import Macroquad at the
top of the file.

New variables

We will need two new variables, score and high_score , to keep track of the
player’s points as well as the highest score ever achieved. We’ll use the function
fs::read_to_string() to read the file highscore.dat from disk. The points

stored in the file need to be converted to u32 with i.parse::<u32>() . If anything
goes wrong, if the file doesn’t exist or it contains something other than a number,
the number 0 will be returned instead.

We’re writing the points directly to the computers hard drive, which will not
work if the game has been compiled to WebAssembly and is run on a web
page. This will be treated as if the file doesn’t exist.

It could be possible to use the browser’s storage, or sending the score to a web
server, but that is not covered by this guide.

use std::fs;

 let mut score: u32 = 0;
 let mut high_score: u32 = fs::read_to_string("highscore.dat")
 .map_or(Ok(0), |i| i.parse::<u32>())
 .unwrap_or(0);

Note

40

https://doc.rust-lang.org/std/fs/index.html

Updating the high score

If the circle collides with a square we’ll check if the current score is higher than the
high score. If it is higher, we’ll update the high score and store the new high score
to the file highscore.dat .

Macroquad supports reading files when the game is run on a web page. We
could use the function load_string() to load the high score instead. But since
it isn’t possible to save the file, this isn’t particularly useful in this case.

Increasing the score

When a bullet hits a square, we’ll increase the current score based on the size of
the square. After that we’ll update the high_score if the current score is higher.

 if score == high_score {
 fs::write("highscore.dat",
high_score.to_string()).ok();
 }

 if squares.iter().any(|square| circle.collides_with(square)) {

 gameover = true;
 }

Note

 score += square.size.round() as u32;
 high_score = high_score.max(score);

 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;

 }

41

https://docs.rs/macroquad/latest/macroquad/file/fn.load_string.html

Resetting the score

When a new game is started, we need to set the score variable to 0 .

Displaying scores

Finally, we’ll display the score and high_score on the screen. We’ll display the
score in the top left corner of the screen. To be able to display the high score in

the top right corner we’ll use the function measure_text() to calculate how far
from the right edge of the screen the text should be displayed.

To ensure that the dimensions are correct we must use the same arguments for
both measure_text() and draw_text() . The arguments for these functions are
text , font , font_size and font_scale . Since we aren’t setting any specific font

or scaling the size of the text, we’ll use None as the value for font , and 1.0 as
font_scale . The font_size can be set to 25.0 .

 score = 0;

 if gameover && is_key_pressed(KeyCode::Space) {
 squares.clear();
 bullets.clear();
 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;

 gameover = false;
 }

42

https://docs.rs/macroquad/latest/macroquad/text/fn.measure_text.html

The function measure_text() returns the struct TextDimensions which
contains the fields width , height , and offset_y .

Run the game and try to get a high score!

 draw_text(
 format!("Score: {}", score).as_str(),
 10.0,
 35.0,
 25.0,
 WHITE,
);
 let highscore_text = format!("High score: {}", high_score);
 let text_dimensions = measure_text(highscore_text.as_str(),
None, 25, 1.0);
 draw_text(
 highscore_text.as_str(),
 screen_width() - text_dimensions.width - 10.0,
 35.0,
 25.0,
 WHITE,
);

Info

43

https://docs.rs/macroquad/latest/macroquad/text/struct.TextDimensions.html

Try writing a congratulations message below the “GAME OVER” text if the
player reached a high score.

Challenge

44

Game state

Before we add any more functionality to our game it’s time for some refactoring.
To make it easier to keep track of the game state we’ll add an enum called
GameState with variants to differentiate between the game being played and the

game being over. This will allows us to remove the gameover variable, and we can
add states for showing a start menu and pausing the game.

Implementation

Game state enum

Begin by adding an enum called GameState below the Shape implementation. It
should contain all four possible game states: MainMenu , Playing , Paused , and
GameOver .

45

Game state variable

Replace the line that declares the gameover variable with a line that instantiates a
game_state variable set to GameState::MainMenu .

Match on GameState

We’ll replace the old code in the game loop with code that uses the match control
flow construct on the game_state variable. It has to match on all four states in the
enum. Later on we’ll add back code from the earlier chapter within the matching
arms. Keep the call to clearing the screen at the start of the loop, and the call to
next_frame().await at the end.

enum GameState {
 MainMenu,
 Playing,
 Paused,
 GameOver,
}

 let mut game_state = GameState::MainMenu;

46

Main menu

Now let’s add back code into the match arms to handle each game state. When the
game is started, the state will be GameState::MainMenu . We’ll start by quitting the
game if the Escape key is pressed. If the player presses the space key we’ll set the
game_state to the new state GameState::Playing . We’ll also reset all the game

variables. We will also draw the text “Press space” in the middle of the screen.

 match game_state {
 GameState::MainMenu => {
 ...
 }
 GameState::Playing => {
 ...
 }
 GameState::Paused => {
 ...
 }
 GameState::GameOver => {
 ...
 }
 }

 clear_background(DARKPURPLE);

 next_frame().await

47

Playing the game

Let’s add back the code for playing the game to the matching arm for the state
GameState::Playing . It’s the same code as most of the game loop from the last

chapter. However, don’t add back the code that handles Game Over as it will be
added in the matching arm for the GameState::GameOver .

We’ll also add a code that checks if the player presses the Escape key and change
the state to GameState::Paused .

 GameState::MainMenu => {
 if is_key_pressed(KeyCode::Escape) {
 std::process::exit(0);
 }
 if is_key_pressed(KeyCode::Space) {
 squares.clear();
 bullets.clear();
 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 score = 0;
 game_state = GameState::Playing;
 }
 let text = "Press space";
 let text_dimensions = measure_text(text, None, 50,
1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 WHITE,
);
 },

48

 GameState::Playing => {

 if is_key_pressed(KeyCode::Escape) {
 game_state = GameState::Paused;
 }

 let delta_time = get_frame_time();
 if is_key_down(KeyCode::Right) {
 circle.x += MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Left) {
 circle.x -= MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Down) {
 circle.y += MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Up) {
 circle.y -= MOVEMENT_SPEED * delta_time;
 }
 if is_key_pressed(KeyCode::Space) {
 bullets.push(Shape {
 x: circle.x,
 y: circle.y,
 speed: circle.speed * 2.0,
 size: 5.0,
 collided: false,
 });
 }

 // Clamp X and Y to be within the screen
 circle.x = clamp(circle.x, 0.0, screen_width());
 circle.y = clamp(circle.y, 0.0, screen_height());

 // Generate a new square
 if rand::gen_range(0, 99) >= 95 {
 let size = rand::gen_range(16.0, 64.0);
 squares.push(Shape {
 size,
 speed: rand::gen_range(50.0, 150.0),
 x: rand::gen_range(size / 2.0, screen_width() -
size / 2.0),
 y: -size,
 collided: false,
 });
 }

 // Movement

49

 for square in &mut squares {
 square.y += square.speed * delta_time;
 }
 for bullet in &mut bullets {
 bullet.y -= bullet.speed * delta_time;
 }

 // Remove shapes outside of screen
 squares.retain(|square| square.y < screen_height() +
square.size);
 bullets.retain(|bullet| bullet.y > 0.0 - bullet.size /
2.0);

 // Remove collided shapes
 squares.retain(|square| !square.collided);
 bullets.retain(|bullet| !bullet.collided);

 // Check for collisions
 if squares.iter().any(|square|
circle.collides_with(square)) {
 if score == high_score {
 fs::write("highscore.dat",
high_score.to_string()).ok();
 }
 game_state = GameState::GameOver;
 }
 for square in squares.iter_mut() {
 for bullet in bullets.iter_mut() {
 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;
 score += square.size.round() as u32;
 high_score = high_score.max(score);
 }
 }
 }

 // Draw everything
 for bullet in &bullets {
 draw_circle(bullet.x, bullet.y, bullet.size / 2.0,
RED);
 }
 draw_circle(circle.x, circle.y, circle.size / 2.0,
YELLOW);
 for square in &squares {
 draw_rectangle(

50

Pause the game

Many games have the option to pause the action, so we’ll add support for that in
our game, too. When the game is paused, we’ll check if the player presses the
Space key and change the game state to GameState::Playing so that the game

can continue. We’ll also draw a text on the screen showing that the game is
paused.

 },

 square.x - square.size / 2.0,
 square.y - square.size / 2.0,
 square.size,
 square.size,
 GREEN,
);
 }
 draw_text(
 format!("Score: {}", score).as_str(),
 10.0,
 35.0,
 25.0,
 WHITE,
);
 let highscore_text = format!("High score: {}",
high_score);
 let text_dimensions =
measure_text(highscore_text.as_str(), None, 25, 1.0);
 draw_text(
 highscore_text.as_str(),
 screen_width() - text_dimensions.width - 10.0,
 35.0,
 25.0,
 WHITE,
);

51

Game Over

Finally we will handle what happens when the game is over. If the player presses
the space bar we’ll change the state to GameState::MainMenu to allow the player to
start a new game or quit the game. We’ll also draw the “GAME OVER!” text to the
screen as we did in the last chapter.

 GameState::Paused => {
 if is_key_pressed(KeyCode::Space) {
 game_state = GameState::Playing;
 }
 let text = "Paused";
 let text_dimensions = measure_text(text, None, 50,
1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 WHITE,
);
 },

 GameState::GameOver => {
 if is_key_pressed(KeyCode::Space) {
 game_state = GameState::MainMenu;
 }
 let text = "GAME OVER!";
 let text_dimensions = measure_text(text, None, 50,
1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 RED,
);
 },

52

Since the states for GameState::Playing and GameState::GameOver are
separated, the squares and circles will not be shown when the game is paused.

Now that we have a main menu, you could come up with a name for your
game and display it in a large font at the top of the screen in the state
GameState::MainMenu .

You could also try drawing all the circles and squares even when the game is
paused without moving them.

Note

Challenge

53

Starfield shader

The purple background on the screen is starting to feel a bit boring. Instead we’ll
add something more interesting. We’ll use a pixel shader to display a moving
starfield in the background. How to implement a shader is outside the scope of
this guide, so we’ll use one that has already been prepared for us.

In short, a shader is a small program that runs on the GPU of the computer. They
are written in a C-like programming language called GLSL. The shader is made up
of two parts, a vertex shader and a fragment shader. The vertex shader converts
from coordinates in a 3D environment to the 2D coordinates of the screen.
Whereas the fragment shader is run for every pixel on the screen to set the
variable gl_FragColor to define the color that pixel should have. Since our game
is entirely in 2D, the vertex shader won’t do anything other than setting the
position.

54

Implementation

Shaders

At the top of the main.rs file we’ll add a vertex shader, the fragment shader will
be loaded from a file that we will add later. We’ll use the Rust macro include_str!
() to read the file as a &str at compile time. The vertex shader is so short that it
can be added directly in the Rust source code.

The most important line in the vertex shader is the line that sets gl_Position . For
simplicity’s sake we’ll also set the iTime variable that is used by the fragment
shader from _Time.x . It would also be possible to use _Time directly in the
fragment shader, but it would mean we have to change it slightly.

Initialize the shader

In the main() function, above the loop, we need to setup a few variables to be
able to use the shader. We start by adding the variable direction_modifier that

const FRAGMENT_SHADER: &str = include_str!("starfield-shader.glsl");

const VERTEX_SHADER: &str = "#version 100
attribute vec3 position;
attribute vec2 texcoord;
attribute vec4 color0;
varying float iTime;

uniform mat4 Model;
uniform mat4 Projection;
uniform vec4 _Time;

void main() {
 gl_Position = Projection * Model * vec4(position, 1);
 iTime = _Time.x;
}
";

55

will be used to change the direction of the stars horizontally, depending on
whether the circle is moved left or right. After that we create a render_target to
which the shader will be rendered.

Now we can create a Material with the vertex shader and the fragment shader
using the enum ShaderSource::Glsl .

In the parameters we’ll also setup two uniforms for the shader that are global
variables that we can set for every frame. The uniform iResolution will contain
the size of the window and direction_modifier is used to control the direction of
the stars.

Macroquad will automatically add some uniforms to all shaders. The available
uniforms are _Time , Model , Projection , Texture , and _ScreenTexture .

 let mut direction_modifier: f32 = 0.0;
 let render_target = render_target(320, 150);
 render_target.texture.set_filter(FilterMode::Nearest);
 let material = load_material(
 ShaderSource::Glsl {
 vertex: VERTEX_SHADER,
 fragment: FRAGMENT_SHADER,
 },
 MaterialParams {
 uniforms: vec![
 ("iResolution".to_owned(), UniformType::Float2),
 ("direction_modifier".to_owned(), UniformType::Float1),
],
 ..Default::default()
 },
)
 .unwrap();

Info

56

Draw the shader

It’s now time to change the purple background to our new starfield. Change the
line clear_background(DARKPURPLE); to the code below.

The first thing we need to do is to set the window resolution to the material
uniform iResolution . We’ll also set the direction_modifier uniform to the same
value as the corresponding variable.

After this we’ll use the function gl_use_material() to use the material. Finally we
can use the function draw_texture_ex() to draw the texture from our
render_target on the background of the screen. Before we continue we’ll restore

the shader with the function gl_use_default_material() so that it won’t be used
when drawing the rest of the game.

Controlling the stars

When the player holds down the left or right arrow key we’ll add or subtract a
value from the variable direction_modifier so that the shader can control the

 clear_background(BLACK);

 material.set_uniform("iResolution", (screen_width(),
screen_height()));
 material.set_uniform("direction_modifier", direction_modifier);
 gl_use_material(&material);
 draw_texture_ex(
 &render_target.texture,
 0.,
 0.,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(screen_width(), screen_height())),
 ..Default::default()
 },
);
 gl_use_default_material();

57

movement of the stars. Remember to multiply the value with delta_time so that
the change is relative to framerate, just like when doing the movement.

Create the shader file

Now create a file with the name starfield-shader.glsl in the src directory to
contain the fragment shader and add the following code:

 direction_modifier += 0.05 * delta_time;

 direction_modifier -= 0.05 * delta_time;

 if is_key_down(KeyCode::Right) {
 circle.x += MOVEMENT_SPEED * delta_time;

 }
 if is_key_down(KeyCode::Left) {
 circle.x -= MOVEMENT_SPEED * delta_time;

 }

58

#version 100

// Starfield Tutorial by Martijn Steinrucken aka BigWings - 2020
// countfrolic@gmail.com
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License.
// From The Art of Code: https://www.youtube.com/watch?v=rvDo9LvfoVE

precision highp float;

varying vec4 color;
varying vec2 uv;
varying float iTime;

uniform vec2 iResolution;
uniform float direction_modifier;

#define NUM_LAYERS 4.

mat2 Rot(float a) {
 float s = sin(a), c = cos(a);
 return mat2(c, -s, s, c);
}

float Star(vec2 uv, float flare) {
 float d = length(uv);
 float m = .05 / d;

 float rays = max(0., 1. - abs(uv.x * uv.y * 1000.));
 m += rays * flare;
 uv *= Rot(3.1415 / 4.);
 rays = max(0., 1. - abs(uv.x * uv.y * 1000.));
 m += rays * .3 * flare;

 m *= smoothstep(1., .2, d);

 return m;
}

float Hash21(vec2 p) {
 p = fract(p * vec2(123.34, 456.21));
 p += dot(p, p + 45.32);
 return fract(p.x * p.y);
}

59

vec3 StarLayer(vec2 uv) {
 vec3 col = vec3(0);

 vec2 gv = fract(uv) - .5;
 vec2 id = floor(uv);

 float t = iTime * 0.1;
 for (int y = -1; y <= 1; y++) {
 for (int x = -1; x <= 1; x++) {
 vec2 offs = vec2(x, y);

 float n = Hash21(id + offs); // random between 0 and 1
 float size = fract(n * 345.32);
 float star = Star(gv - offs - vec2(n, fract(n * 42.)) + .5,
smoothstep(.9, 1., size) * .6);
 vec3 color = sin(vec3(.8, .8, .8) * fract(n * 2345.2) *
123.2) * .5 + .5;
 color = color * vec3(0.25, 0.25, 0.20);
 star *= sin(iTime * 3. + n * 6.2831) * .5 + 1.;
 col += star * size * color;
 }
 }
 return col;
}

void main()
{
 vec2 uv = (gl_FragCoord.xy - .5 * iResolution.xy) / iResolution.y;
 float t = iTime * .02;

 float speed = 3.0;
 vec2 direction = vec2(-0.25 + direction_modifier, -1.0) * speed;

 uv += direction;
 vec3 col = vec3(0);

 for (float i = 0.; i < 1.; i += 1. / NUM_LAYERS) {
 float depth = fract(i+t);
 float scale = mix(20., .5, depth);
 float fade = depth * smoothstep(1., .9, depth);
 col += StarLayer(uv * scale + i * 453.2) * fade;
 }

 gl_FragColor = vec4(col, 1.0);
}

60

If you want to know how the shader works you can watch the video Shader
Coding: Making a starfield by The Art of Code.

Our starfield is now done and the game is starting to look like it takes place in
outer space.

Look at the video Shader Coding: Making a starfield and see if you can change
the color and size of the stars.

Info

Challenge

61

https://youtu.be/rvDo9LvfoVE
https://youtu.be/rvDo9LvfoVE

Particle explosions

We don’t want the squares to just disappear when they are hit by a bullet. So now
we’ll make use of the Macroquad particle system to generate explosions. With the
particle system you can easily create and draw many small particles on the screen
based on a base configuration. In our case the particles will start from the center of
the square and move outwards in all directions. In a later chapter we will add a
graphical image to the particles to make it look even more like a real explosion.

Implementation

Add the particle crate

The code for Macroquads particle system is in a separate crate. Start by adding it
to the Cargo.toml file, either by changing the file by hand, or by running the
following command:

cargo add macroquad-particles

62

The following line will be added to the Cargo.toml file under the heading
[dependencies] .

Version 0.2.2 of macroquad-particles doesn’t support the latest version of
Macroquad. If you get an error when compiling you can try using both
macroquad and macroquad-particles crates directly from git.

Import crate

At the top of main.rs we need to import the things we use from the
macroquad_particles module.

Particle configuration

We’ll use the same configuration for all the explosions, and will only change the
size based on the sizes of the squares. Create a function that returns an

macroquad-particles = "0.2.1"

[package]
name = "my-game"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]
macroquad = { version = "0.4" }

Bug

use macroquad_particles::{self as particles, ColorCurve, Emitter,
EmitterConfig};

63

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#specifying-dependencies-from-git-repositories

EmitterConfig that can be used to create an Emitter . The Emitter is a point
from where particles can be generated.

There are a lot of different things to configure in an Emitter . The fields of
EmitterConfig are described in the documentation of the module macroquad-
particles .

Vector of explosions

We need another vector to keep track of all the explosions. It includes a tuple with
an Emitter and the coordinate it should be drawn at.

fn particle_explosion() -> particles::EmitterConfig {
 particles::EmitterConfig {
 local_coords: false,
 one_shot: true,
 emitting: true,
 lifetime: 0.6,
 lifetime_randomness: 0.3,
 explosiveness: 0.65,
 initial_direction_spread: 2.0 * std::f32::consts::PI,
 initial_velocity: 300.0,
 initial_velocity_randomness: 0.8,
 size: 3.0,
 size_randomness: 0.3,
 colors_curve: ColorCurve {
 start: RED,
 mid: ORANGE,
 end: RED,
 },
 ..Default::default()
 }
}

Info

 let mut explosions: Vec<(Emitter, Vec2)> = vec![];

64

https://docs.rs/macroquad-particles/latest/macroquad_particles/struct.EmitterConfig.html

When we start a new game, we need to clear the vector of explosions.

Create an explosion

When a square is hit by a bullet, we’ll create a new Emitter based on the
configuration from particle_explosion() , with the addition that the number of
particles is based on the size of the square. The coordinates where the particles
are generated should be the same as the coordinates of the square.

 explosions.clear();

 if is_key_pressed(KeyCode::Space) {
 squares.clear();
 bullets.clear();

 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 score = 0;
 game_state = GameState::Playing;
 }

 explosions.push((
 Emitter::new(EmitterConfig {
 amount: square.size.round() as u32
* 2,
 ..particle_explosion()
 }),
 vec2(square.x, square.y),
));

 for square in squares.iter_mut() {
 for bullet in bullets.iter_mut() {
 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;
 score += square.size.round() as u32;
 high_score = high_score.max(score);

 }
 }
 }

65

Removing explosions

When the emitter has finished drawing all the particles, we need to remove them
from the explosions vector so that we stop trying to draw it. Add the following
code below the code that removes squares and bullets.

Drawing explosions

After drawing all the squares, we can loop through the explosions vector and
draw them. We only need to send in the coordinates where the particles will be
generated, then the emitter will randomize and move all the particles by itself.

It’s time to try the game to see if there are particle explosions when the squares
get hit by bullets.

 explosions.retain(|(explosion, _)|
explosion.config.emitting);

 for (explosion, coords) in explosions.iter_mut() {
 explosion.draw(*coords);
 }

66

Read the documentation for EmitterConfig and try what happens if you
change different values. Can you add a particle system that shoots particles out
the back of the circle so it looks like a rocket exhaust?

Challenge

67

Graphics
It’s time to add some graphics to our game to make it look more like a real game.
We will do it in three steps so that there won’t be too many changes at once. To
begin with we’ll add code to load textures directly in our main function and change
the draw function in the game loop. In a later chapter we will look at how to extract
the texture loading into a separate function.

Before we make any code changes we need to download all necessary resources.
Download this package with graphics and sound and extract it to a directory called
assets in the root directory of your game.

All the resources are public domain and are primarily from the website
OpenGameArt.org which offers lots of different resources to develop games.

The file structure for your game should look like this:

.
├── Cargo.lock
├── Cargo.toml
├── README.md
├── assets
│ ├── 8bit-spaceshooter.ogg
│ ├── atari_games.ttf
│ ├── button_background.png
│ ├── button_clicked_background.png
│ ├── enemy-big.png
│ ├── enemy-medium.png
│ ├── enemy-small.png
│ ├── explosion.png
│ ├── explosion.wav
│ ├── laser-bolts.png
│ ├── laser.wav
│ ├── ship.png
│ └── window_background.png
└── src
 ├── main.rs
 └── starfield-shader.glsl

68

file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/assets.zip
https://opengameart.org/

Update web publishing

If you chose to setup web publishing of your game to GitHub Pages in the first
chapter you will need to update the file .github/workflows/deploy.yml to make
sure the assets are included when publishing.

The assets directory needs to be created:

The asset files need to be copied into the assets directory:

The complete deploy configuration should now look like this:

 mkdir -p ./deploy/assets

 cp -r assets/ ./deploy/

69

file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch1-first-program.html#publicera-p%C3%A5-webben-om-du-vill
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch1-first-program.html#publicera-p%C3%A5-webben-om-du-vill

Commit your changes and push to GitHub and verify that the game still works on:

name: Build and Deploy
on:
 push:
 branches:
 - main # If your default branch is named something else, change
this

permissions:
 contents: write
 pages: write

jobs:
 build-and-deploy:
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@v2

 - name: Install Rust
 uses: actions-rs/toolchain@v1
 with:
 toolchain: stable
 target: wasm32-unknown-unknown
 override: true

 - name: Build
 run: cargo build --release --target wasm32-unknown-unknown

 - name: Prepare Deployment Directory
 run: |
 mkdir -p ./deploy/assets
 cp ./target/wasm32-unknown-unknown/release/my-game.wasm
./deploy/
 cp index.html ./deploy/
 cp -r assets/ ./deploy/

 - name: Deploy
 uses: peaceiris/actions-gh-pages@v3
 with:
 github_token: ${{ secrets.GITHUB_TOKEN }}
 publish_dir: ./deploy

70

https://<your-github-account>.github.io/<repository-name> .

71

Spaceship and bullets

To begin with we’ll add graphics for the spaceship that the player controls. It will be
animated with two different sprites and will also have different animations for
when the spaceship moves to the left or right. We’ll also add a texture with
animation for the bullets that the spaceship shoots.

Implementation

Import

The animation support in Macroquad is considered an experimental feature. It
might change in a future version of Macroquad. It is not included in the prelude
that we have imported, so we will have to import it explicitly.

Import the structs AnimatedSprite and Animation at the top of main.rs file.

use macroquad::experimental::animation::{AnimatedSprite, Animation};

72

Configure assets directory

We need to start by defining where Macroquad should read the resources. We’ll
use the function set_pc_assets_folder() that takes the path to the assets
directory relative to the root directory of the game. This is needed for platforms
that might place files in other places and also has the added benefit that we don’t
need to add the directory name for every file we load.

Add the following code in the main function above the game loop:

Load textures

Load the image files used for the animation textures of the ship and bullets. Use
the function load_texture() to load a texture, which takes the name of the file to
load. This function is async, because it supports loading files over HTTP in
WebAssembly, so we need to call await to get the result.

Since loading files can fail, this function will return a Result . We will call expect()
on the result to stop the program if it wasn’t possible to load the file. This can
happen if the file is missing, or it has wrong read permissions. On WebAssembly it
is possible that the HTTP request failed.

After loading the texture we’ll set which kind of filter to use when scaling the
texture using the method set_filter() . We will use the filter
FilterMode::Nearest because we want to keep the pixelated look of the sprites.

This needs to be done on every texture that is loaded. For high resolution textures
it would be better to use FilterMode::Linear which gives a linear scaling of the
texture.

We’ll load the file ship.png that contains the animations for the spaceship, and
the file laser-bolts.png that contains animations for two different kinds of
bullets.

 set_pc_assets_folder("assets");

73

The images are returned as the struct Texture2D that stores the image data in
GPU memory. The corresponding struct for images stored in CPU memory is
Image .

Build a texture atlas

After loading all the textures we’ll call the Macroquad function
build_textures_atlas() that will build an atlas containing all loaded textures.

This will ensure that all calls to draw_texture() and draw_texture_ex() will use
the texture from the atlas instead of each separate texture, which is much more
efficient. All textures need to be loaded before this function is called.

Bullet animation

The image laser-bolts.png is composed of four sprites, in two
rows. These make up the animations for two different types of
bullets. We will name the first one bullet and the second one
bolt . Each animation is one row with two frames each and they

should be shown at 12 frames per second. The size of the sprites is
16x16 pixels.

 let ship_texture: Texture2D =
load_texture("ship.png").await.expect("Couldn't load file");
 ship_texture.set_filter(FilterMode::Nearest);
 let bullet_texture: Texture2D = load_texture("laser-bolts.png")
 .await
 .expect("Couldn't load file");
 bullet_texture.set_filter(FilterMode::Nearest);

Info

 build_textures_atlas();

74

https://docs.rs/macroquad/latest/macroquad/texture/struct.Texture2D.html
https://docs.rs/macroquad/latest/macroquad/texture/struct.Image.html

Each animation in a spritesheet is placed in a separate row, with the frames next to
each other horizontally. Each Animation should have a descriptive name, define
which row in the spritesheet it is, how many frames it has, and how many frames
should be displayed each second.

Create an AnimatedSprite with the tile_width and tile_height set to 16 , and
an array with an Animation struct for each of the two rows in the spritesheet. The
first one should be named bullet and have the row 0 and the second one
should have the name bolt and the row 1 . Both should have frames set to 2
and fps set to 12 .

We will only use the second animation, so we’ll use the method set_animation()
to define that we will be using the animation on row 1 .

Spaceship animation

The spritesheet for the spaceship is in the image ship.png and we need to define
how the animations in the spritesheet should be displayed. We have to create an

 let mut bullet_sprite = AnimatedSprite::new(
 16,
 16,
 &[
 Animation {
 name: "bullet".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "bolt".to_string(),
 row: 1,
 frames: 2,
 fps: 12,
 },
],
 true,
);
 bullet_sprite.set_animation(1);

75

AnimatedSprite for the ship as well. The size of each frame of the
spaceship spritesheet is 16x24 pixels, so we’ll set tile_width to
16 and tile_height to 24 . After that is an array with an
Animation struct for each animation in the spritesheet that we

want to use.

There are five animations available in the spritesheet, with the first
one in the top row. We will only use three of the spritesheet
animations in our AnimatedSprite , the second and fourth row
from the top in the spritesheet are unused. The first one is used
when flying up or down, so add an Animation in the
AnimatedSprite with row defined as 0 as the indexes are 0-

based, and the name set to idle . The ship will keep pointing up
regardless of if it moves up or down. The second Animation is for
moving the spaceship to the left, which will use the row with index
2 in the spritesheet. Finally, the third Animation is used when

moving the spaceship to the right, and has the row index 4 . There
are two frames in each Animation and the fps should be set to 12 frames per
second.

Finally we set playing to true so that the animation will be active.

76

Animate direction

For the spaceship we need to set which animation to use based on the direction
movement. In the code for moving the spaceship we will add a line where we use
the method set_animation() on the ship_sprite . We start by setting the
animation to 0 if it isn’t turning in any direction, if it is moving to the right we’ll set
the animation to 2 , and if it moves to the left we’ll set the animation to 1 . These
numbers are indexes in the array of Animation structs we defined in the
AnimatedSprite for the spaceship, which means they are 0-based.

 let mut ship_sprite = AnimatedSprite::new(
 16,
 24,
 &[
 Animation {
 name: "idle".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "left".to_string(),
 row: 2,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "right".to_string(),
 row: 4,
 frames: 2,
 fps: 12,
 },
],
 true,
);

77

Change bullet size

Since the graphics for the bullets are larger than the tiny circle we used to draw for
them, we need to change the size and starting position when creating a bullet.

Update animations

In order for Macroquad to animate the textures, we need to call the method
update() on every sprite inside our game loop. Add the following two lines below

the code that updates the positions of enemies and bullets.

 ship_sprite.set_animation(0);

 ship_sprite.set_animation(2);

 ship_sprite.set_animation(1);

 if is_key_down(KeyCode::Right) {
 circle.x += MOVEMENT_SPEED * delta_time;
 direction_modifier += 0.05 * delta_time;

 }
 if is_key_down(KeyCode::Left) {
 circle.x -= MOVEMENT_SPEED * delta_time;
 direction_modifier -= 0.05 * delta_time;

 }

 y: circle.y - 24.0,

 size: 32.0,

 if is_key_pressed(KeyCode::Space) {
 bullets.push(Shape {
 x: circle.x,

 speed: circle.speed * 2.0,

 collided: false,
 });
 }

78

Draw bullet animations

Now we can use the function draw_texture_ex to draw each frame of the
animation. Remove the lines that draw a circle for each bullet and insert instead
the code below. First we call the method frame() on the bullet_sprite to get
the current animation frame and set it to the variable bullet_frame .

Inside the loop that draws all the bullets we’ll call draw_texture_ex to draw the
bullet frame. It takes the bullet_texture as argument, and an x and y position
based on the size of the bullet. We also add the struct DrawTextureParams with the
fields dest_size and source_rect . The field dest_size defines in which size the
texture will be drawn, so we will use a Vec2 with the size of the bullet for both x
and y . Finally we’ll use bullet_frame.source_rect , which is a reference to where
in the texture the current frame is placed.

 ship_sprite.update();
 bullet_sprite.update();

 for square in &mut squares {
 square.y += square.speed * delta_time;
 }
 for bullet in &mut bullets {
 bullet.y -= bullet.speed * delta_time;
 }

79

By using DrawTextureParams it is possible to change how the texture should
be drawn. It is possible to draw the texture rotated or mirrored with the fields
rotation , pivot , flip_x , and flip_y .

Draw the spaceship frames

Finally it’s time to replace the circle with the texture for the spaceship. It works in
the same way as for the bullets. First we’ll retrieve the current frame from the
animation sprite, and then we’ll draw it using draw_texture_ex() .

Because the spaceship animation isn’t the same size in width and height, we’ll use
ship_frame.dest_size to define which size should be drawn. To make it a bit

bigger we’ll double the size.

 let bullet_frame = bullet_sprite.frame();

 draw_texture_ex(
 &bullet_texture,
 bullet.x - bullet.size / 2.0,
 bullet.y - bullet.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(bullet.size,
bullet.size)),
 source: Some(bullet_frame.source_rect),
 ..Default::default()
 },

 for bullet in &bullets {

);
 }

Info

80

https://docs.rs/macroquad/0.3.25/macroquad/texture/struct.DrawTextureParams.html

If everything works correctly, there should be animated graphics for both the
spaceship and the bullets when running the game.

Improve loading times

Adding the following snippet at the end of the Cargo.toml file will ensure that the
assets are loaded much faster when running on a desktop computer.

 let ship_frame = ship_sprite.frame();
 draw_texture_ex(
 &ship_texture,
 circle.x - ship_frame.dest_size.x,
 circle.y - ship_frame.dest_size.y,
 WHITE,
 DrawTextureParams {
 dest_size: Some(ship_frame.dest_size * 2.0),
 source: Some(ship_frame.source_rect),
 ..Default::default()
 },
);

[profile.dev.package.'*']
opt-level = 3

81

Try using the two extra spaceship animations to make the ship turn only
slightly just when it changes direction and then make it turn fully after a short
time.

Challenge

82

Graphical explosions

To make the explosions a bit more spectacular we will add graphical textures to
the particles.

Implementation

Import

To begin with, we need to update the import of macroquad_particles and replace
ColorCurve with AtlasConfig .

Update the particle configuration

We need to update the particle configuration for our particle_explosion so that
it will use AtlasConfig to make it use a texture to draw the particles instead of

use macroquad_particles::{self as particles, AtlasConfig, Emitter,
EmitterConfig};

83

using the ColorCurve . We also update the size and lifetime to work better with the
graphics.

The AtlasConfig describes the layout of the spritesheet when animating particles
with a texture. The arguments to new() are n for columns, m for rows, and a
range for start and end index of the animation. Our spritesheet has five frames in

a single row, and we want to use them all for our animation, so we use the values
5 , 1 , and the range 0.. .

Load textures

Before the line that builds the texture atlas we need to load the
texture with the animation for the particle explosion. The file is
called explosion.png . Don’t forget to set the filter on the texture to
FilterMode::Nearest .

 initial_velocity: 400.0,

 size: 16.0,

 atlas: Some(AtlasConfig::new(5, 1, 0..)),

fn particle_explosion() -> particles::EmitterConfig {
 particles::EmitterConfig {
 local_coords: false,
 one_shot: true,
 emitting: true,
 lifetime: 0.6,
 lifetime_randomness: 0.3,
 explosiveness: 0.65,
 initial_direction_spread: 2.0 * std::f32::consts::PI,

 initial_velocity_randomness: 0.8,

 size_randomness: 0.3,

 ..Default::default()
 }
}

84

Add the texture

When we create the explosion, we need to add the texture to use. We’ll also
update the number to get a few more particles. We need to use the method
clone() on the texture, which is efficient since it is only a pointer to the texture.

When the game is run, the explosions will be animated with the explosion image
instead of colored squares.

 let explosion_texture: Texture2D = load_texture("explosion.png")
 .await
 .expect("Couldn't load file");
 explosion_texture.set_filter(FilterMode::Nearest);
 build_textures_atlas();

 amount: square.size.round() as u32
* 4,
 texture:
Some(explosion_texture.clone()),

 explosions.push((
 Emitter::new(EmitterConfig {

 ..particle_explosion()
 }),
 vec2(square.x, square.y),
));

85

Change the values of EmitterConfig fields based on the size of the enemy
that is hit.

Challenge

86

Animated enemies

The only thing left is to change the boring squares and replace them with some
more exciting graphics. This works the same as when animating the spaceship, we
load a texture, create an AnimatedSprite , and change how the enemies are drawn
to the screen.

Implementation

Load the texture

Load the texutre enemy-small.png and set the filter mode to
FilterMode::Nearest .

 let enemy_small_texture: Texture2D = load_texture("enemy-
small.png")
 .await
 .expect("Couldn't load file");
 enemy_small_texture.set_filter(FilterMode::Nearest);
 build_textures_atlas();

87

Create animation

Create an AnimatedSprite to describe the animations in the
texture. It is only one animation with two frames. The graphics for
the small enemy ships are 16x16 pixels, but the texture has one
pixel gutter between the frames to ensure that they don’t bleed into each other
when we scale the texture.

Update animation

The enemy sprites need to be updated, add a line with
enemy_small_sprite.update(); after updating the animations for the
ship_sprite and the bullet_sprite .

Draw enemy frames

We can now change the drawing of squares to drawing the texture from the
current frame of the animation. Vi retrieve the frame from enemy_small_sprite
and use the source_rect in DrawTextureParams in the draw_texture_ex() call.

 let mut enemy_small_sprite = AnimatedSprite::new(
 17,
 16,
 &[Animation {
 name: "enemy_small".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 }],
 true,
);

 enemy_small_sprite.update();

 ship_sprite.update();
 bullet_sprite.update();

88

Since the enemies have a randomized size, we’ll use the size of the enemy when
setting the dest_size and x and y coordinates.

We have now changed to graphics for all the elements of the game, and when you
run it now, it should look like a real game.

The asset package includes two other enemy
spritesheets, enemy-medium.png and enemey-
big.png . Try changing which texture is used for
the enemies based on their size.

 let enemy_frame = enemy_small_sprite.frame();

 draw_texture_ex(
 &enemy_small_texture,
 square.x - square.size / 2.0,
 square.y - square.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(square.size,
square.size)),
 source: Some(enemy_frame.source_rect),
 ..Default::default()
 },
);

 for square in &squares {

 }

Challenge

89

Music and sound effects
A game doesn’t only need graphics to be good, it also needs to sound good. Let’s
add some music and sound effects to the game.

Implementation

Activate the sound feature

To be able to use sound in Macroquad we need to activate the audio feature. This
is done by adding audio to the list of features in the macroquad dependency in
the Cargo.toml file.

Import

The sound module isn’t included the Macroquad prelude, so we need to import the
audio module at the top of the main.rs file. The things we need to import are
load_sound , play_sound , play_sound_once , and PlaySoundParams .

macroquad = { version = "0.4", features = ["audio"] }

[package]
name = "my-game"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]

macroquad-particles = "0.2.2"

90

Load resources

After all the textures have been loaded, we can load the music and sound effects.
There is a file with the music that is called 8bit-spaceshooter.ogg and two wav
files with sound effects, explosion.wav and laser.wav . The music is in the file
format Ogg Vorbis which is supported by most, but not all, web browsers.

In order for the music to work on the Safari web browser it has to be converted
to WAV format. This would make the file very large, so another option is to use
a version in OGG format and one in MP3 and select which one to use based on
the web browser being used.

Play music

Before the game loop begins we will start playing the music. This is done with the
function play_sound() , which takes a sound, and the struct PlaySoundParams as
arguments. In the parameters we set the sound to be played in a loop and with full
volume.

use macroquad::audio::{load_sound, play_sound, play_sound_once,
PlaySoundParams};

 let theme_music = load_sound("8bit-
spaceshooter.ogg").await.unwrap();
 let sound_explosion = load_sound("explosion.wav").await.unwrap();
 let sound_laser = load_sound("laser.wav").await.unwrap();

Note

91

To stop the music use the function stop_sound() which takes the sound as
argument.

Play laser sound

When the player is shooting a bullet, we will play the sound effect of a laser blast
using the function play_sound_once() . This function takes the sound to play as
the argument. It is a shortcut instead of using play_sound() with a non-looping
parameter.

It’s also possible to set the sound volume per sound using the function
set_sound_volume() which takes a sound and a number between 0 and 1 as

argument.

 play_sound(
 &theme_music,
 PlaySoundParams {
 looped: true,
 volume: 1.,
 },
);

Info

 play_sound_once(&sound_laser);

 bullets.push(Shape {
 x: circle.x,
 y: circle.y - 24.0,
 speed: circle.speed * 2.0,
 size: 32.0,
 collided: false,
 });

Info

92

Play explosion sound

When a bullet hits an enemy, we will play the explosion sound, also using the
function play_sound_once() .

You can now start the game, and it should play music and sound effects.

 play_sound_once(&sound_explosion);

 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;
 score += square.size.round() as u32;
 high_score = high_score.max(score);
 explosions.push((
 Emitter::new(EmitterConfig {
 amount: square.size.round() as u32
* 4,
 texture:
Some(explosion_texture.clone()),
 ..particle_explosion()
 }),
 vec2(square.x, square.y),
));

 }

93

It might be a bit intense to start the music at full volume. Try setting the
volume lower at the start and increase it once the game starts. Maybe also try
to stop the music when the player pauses the game.

Challenge

94

Graphical menu

Macroquad has a built-in system to display a graphical user interface where the
look can easily be changed using PNG images. We will use this to create a graphical
main menu for our game. There will be quite a lot of code to define the look of the
UI. However, once that is done, it is very easy to use it.

The menu will have a window centered on the screen with the text “Main menu” in
the title bar. Inside the window there will be two buttons, one for “Play” and one
for “Quit”. The UI will be built using different kinds of widgets such as label ,
button , editbox , and combobox .

95

Implementation

To begin with we need to import what we need from the ui module.

Load resources

After loading the sounds we’ll load the font and images used for the UI. There is an
image to create the window, window_background.png , one image for the buttons,
button_background.png , and finally an image for when the button is pressed,
button_clicked_background.png . The images are loaded with the function
load_image() and binary files with the function load_file() . Both images and

files are loaded asynchronously and may return errors. This means we will have to
call await and unwrap() to get the files. If we can’t load the files needed to
display the main menu, we can just exit the program immediately.

Create a skin

Before the game loop we need to define how our UI should look. We will build
Style structs for the window, buttons and texts. After that we will use the styles

to create a Skin .

We use the function root_ui() that will draw widgets last in every frame using a
default camera and the coordinate system (0..screen_width(),
0..screen_height()) .

use macroquad::ui::{hash, root_ui, Skin};

 let window_background =
load_image("window_background.png").await.unwrap();
 let button_background =
load_image("button_background.png").await.unwrap();
 let button_clicked_background =
load_image("button_clicked_background.png").await.unwrap();
 let font = load_file("atari_games.ttf").await.unwrap();

96

Window look

To build a style we use a StyleBuilder that has helper methods to define all parts
of the style. Vi get access to it by using the method style_builder() on
root_ui() . The values that aren’t set will use the same values as the default look.

We will use the method background() to set the image used to draw the window.
After that we can use background_margin() to define which parts of the image
that shouldn’t change proportion when the window changes size. This is used to
ensure that the edges of the window will look good.

The method margin() is used to set margins for the content. These values can be
negative to draw content to the borders of the window.

There are many more methods to define styles, these are described in the
documentation for Macroquad’s StyleBuilder

Button look

In the definition for buttons we’ll use two images. Using background() we set the
default image for the button, and background_clicked() is used to set the image
to be displayed while the button is clicked on.

We need to set both background_margin() and margin() to be able to stretch the
image to cover the text inside the button. The look of the text is defined using the
methods font() , text_color() , and font_size() .

 let window_style = root_ui()
 .style_builder()
 .background(window_background)
 .background_margin(RectOffset::new(32.0, 76.0, 44.0, 20.0))
 .margin(RectOffset::new(0.0, -40.0, 0.0, 0.0))
 .build();

Info

97

https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.StyleBuilder.html

Text look

Normal text displayed in the interface uses label_style . We will use the same
font as for the buttons, but in a slightly smaller font size.

Define a Skin

We can now create a Skin using window_style , button_style , and
label_style . We won’t define any other styles for the skin as we won’t be using

them.

We use push_skin() to define the current skin that is to be applied. We will only
use one skin, but to change between different looks between windows, it’s possible
to use push_skin() and pop_skin() .

We will also set the variable window_size to define the size of the window.

 let button_style = root_ui()
 .style_builder()
 .background(button_background)
 .background_clicked(button_clicked_background)
 .background_margin(RectOffset::new(16.0, 16.0, 16.0, 16.0))
 .margin(RectOffset::new(16.0, 0.0, -8.0, -8.0))
 .font(&font)
 .unwrap()
 .text_color(WHITE)
 .font_size(64)
 .build();

 let label_style = root_ui()
 .style_builder()
 .font(&font)
 .unwrap()
 .text_color(WHITE)
 .font_size(28)
 .build();

98

It’s possible to change the look of more parts of the UI. More information on
how to do this can be found in the documentation of the struct Skin.

Build the menu

We can now build a menu by drawing a window with two buttons and a heading.
The content of the GameState::MainMenu matching arm can be replaced with the
code at the end of this chapter.

Start by creating a window using root_ui().window() . The function takes an
argument that is generated with the macro hash! , a position that we’ll calculate
based on the window size and the screen dimensions, and finally a Vec2 for the
size of the window. Finally it takes a function that is used to draw the content of
the window.

Window title

In the window function we start by setting a title for the window with the widget
Label that we can create using ui.label() . The method takes two arguments, a
Vec2 for the position of the label and a string with the text to be displayed. It’s

possible to set None as position, in which case the placement will be relative to the
previous widget. We will use a negative y position to place the text within the title
bar of the window.

 let ui_skin = Skin {
 window_style,
 button_style,
 label_style,
 ..root_ui().default_skin()
 };
 root_ui().push_skin(&ui_skin);
 let window_size = vec2(370.0, 320.0);

Info

99

https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.Skin.html

It’s also possible to create widgets by instantiating a struct and using builder
methods.

widgets::Button::new("Play").position(vec2(45.0, 25.0)).ui(ui);

Buttons

After the label we’ll add a button to begin playing the game. The method
ui.button() returns true when the button is clicked. We will use this to set the
GameState::Playing to start a new game.

Then we can create a button with the text “Quit” to exit the game.

Info

 root_ui().window(
 hash!(),
 vec2(
 screen_width() / 2.0 - window_size.x / 2.0,
 screen_height() / 2.0 - window_size.y / 2.0,
),
 window_size,
 |ui| {
 ui.label(vec2(80.0, -34.0), "Main Menu");
 if ui.button(vec2(65.0, 25.0), "Play") {

 }
 if ui.button(vec2(65.0, 125.0), "Quit") {

 }
 },
);

 GameState::MainMenu => {

 squares.clear();
 bullets.clear();
 explosions.clear();
 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 score = 0;
 game_state = GameState::Playing;

 std::process::exit(0);

 }

100

There are many different widgets that can be used to create interfaces. The list
of available widgets can be found in the documentation of the struct Ui .

Try the game

When starting the game, a graphical menu will be shown where the player can
choose to start a game or quit the program.

Try creating a Skin of your own from another image and make it possible to
switch between the skins while the game is running.

Info

Challenge

101

https://docs.rs/macroquad/0.3.25/macroquad/ui/struct.Ui.html

Resources

We’re starting to get quite a lot of code in our main function so it’s time to refactor
again to improve the code structure a little.

We’ll start by moving all the loading of file assets to a struct. At the same time we
will change all the unwrap() and expect() calls to using the ? operator to
handle error messages.

After that we will make use of a coroutine to load the resources in the background
while also displaying a message about loading resources on the screen.

Finally we will use a Storage struct to make the resources available in the code
without having to send them around to every function where they are needed.

102

Resources and errors
In this chapter we will refactor our code without adding any new functionality to
the game. We do this to build a foundation to be able to add a loading screen
during the loading of resources in the web version. We also want to be able to
refactor all the drawing to be done by the structs. Finally we will be able to move
code away from our main function which is starting to get a bit hard to follow.

Implementation

Resources struct

We start by creating a new struct called Resources that will contain all the files we
load from the file system. Add it above the main function. The struct will have a
field for every asset loaded.

Resources impl

Directly below the Resources struct we’ll add an implementation block for it. To
begin with it will only contain a new method that loads all the files and returns an

struct Resources {
 ship_texture: Texture2D,
 bullet_texture: Texture2D,
 explosion_texture: Texture2D,
 enemy_small_texture: Texture2D,
 theme_music: Sound,
 sound_explosion: Sound,
 sound_laser: Sound,
 ui_skin: Skin,
}

103

instance of the struct if everything went as expected. We’ll reuse the code that
used to be in the main function to load all the files.

We’ll also store the UI Skin as a resource so we won’t have to return the font and
all the images used for it.

The difference in the code is that we’ve replaced all the unwrap() and expect()
calls to use the ? operator instead. Using this the error will be returned instead of
exiting the program. This means we will be able to handle the error in a single
place in our main function if we want to. The error message is an enum of the type
macroquad::Error .

The errors available in Macroquad are documented in macroquad::Error.

Info

104

https://docs.rs/macroquad/latest/macroquad/enum.Error.html

impl Resources {
 async fn new() -> Result<Resources, macroquad::Error> {
 let ship_texture: Texture2D = load_texture("ship.png").await?;
 ship_texture.set_filter(FilterMode::Nearest);
 let bullet_texture: Texture2D = load_texture("laser-
bolts.png").await?;
 bullet_texture.set_filter(FilterMode::Nearest);
 let explosion_texture: Texture2D =
load_texture("explosion.png").await?;
 explosion_texture.set_filter(FilterMode::Nearest);
 let enemy_small_texture: Texture2D = load_texture("enemy-
small.png").await?;
 enemy_small_texture.set_filter(FilterMode::Nearest);
 build_textures_atlas();

 let theme_music = load_sound("8bit-spaceshooter.ogg").await?;
 let sound_explosion = load_sound("explosion.wav").await?;
 let sound_laser = load_sound("laser.wav").await?;

 let window_background =
load_image("window_background.png").await?;
 let button_background =
load_image("button_background.png").await?;
 let button_clicked_background =
load_image("button_clicked_background.png").await?;
 let font = load_file("atari_games.ttf").await?;

 let window_style = root_ui()
 .style_builder()
 .background(window_background)
 .background_margin(RectOffset::new(32.0, 76.0, 44.0, 20.0))
 .margin(RectOffset::new(0.0, -40.0, 0.0, 0.0))
 .build();
 let button_style = root_ui()
 .style_builder()
 .background(button_background)
 .background_clicked(button_clicked_background)
 .background_margin(RectOffset::new(16.0, 16.0, 16.0, 16.0))
 .margin(RectOffset::new(16.0, 0.0, -8.0, -8.0))
 .font(&font)?
 .text_color(WHITE)
 .font_size(64)
 .build();
 let label_style = root_ui()
 .style_builder()

105

Returning errors

To keep things as simple as possible we’ll let our main function return a result that
may be an error. This means we can use the ? operator in the main function as
well. If the main function returns an error, the game will quit and the error
message will be printed on the console.

The standard return value for the main function is () , which is the Rust unit type
that can be used if no value will be returned. Before when the function didn’t
specify a return value, this was still returned implicitly.

If the last expression in a function ends with a semi colon (;) the return value will
be skipped and () is returned instead.

 .font(&font)?
 .text_color(WHITE)
 .font_size(28)
 .build();
 let ui_skin = Skin {
 window_style,
 button_style,
 label_style,
 ..root_ui().default_skin()
 };

 Ok(Resources {
 ship_texture,
 bullet_texture,
 explosion_texture,
 enemy_small_texture,
 theme_music,
 sound_explosion,
 sound_laser,
 ui_skin,
 })
 }
}

async fn main() -> Result<(), macroquad::Error> {
#[macroquad::main("My game")]

106

If you want to know how the Rust unit type works you can find more
information in the Rust unit documentation.

Remove unwrap()

When loading the material for the shader we used to use the method unwrap()
which we will now change to the ? operator to return any error instead. This
change is in the last line of the code below.

Load resources

We’ve finally reached the most interesting part of this chapter. It’s time to change
the code that loads file assets to instead instantiate our Resources struct. We add
the result to the resources variable that we can use later when we need to use a
resource.

Note that we use await after the new() method as it is async. We also use the ?
operator to bubble up any errors.

Info

)?;

 let material = load_material(
 ShaderSource::Glsl {
 vertex: VERTEX_SHADER,
 fragment: FRAGMENT_SHADER,
 },
 MaterialParams {
 uniforms: vec![
 ("iResolution".to_owned(), UniformType::Float2),
 ("direction_modifier".to_owned(), UniformType::Float1),
],
 ..Default::default()
 },

107

https://doc.rust-lang.org/std/primitive.unit.html

Update resource usages

Now that we have loaded all the assets with the Resources struct we need to
update all the places that uses a resource so that they retrieve the asset from it
instead. We basically just add resources. in front of every resource name.

Game music

User interface

Now that we’ve saved the UI Skin in our Resources struct we only need to
activate it using root_ui().push_skin() . We can replace all the lines that builds
the UI with a single line.

Laser sound

The laser sound needs to use the resources variable.

 let resources = Resources::new().await?;
 set_pc_assets_folder("assets");

 &resources.theme_music,
 play_sound(

 PlaySoundParams {
 looped: true,
 volume: 1.,
 },
);

 root_ui().push_skin(&resources.ui_skin);
 let window_size = vec2(370.0, 320.0);

108

Explosions

We need to update both the texture and the sound for the explosions.

Bullets

Update the call to drawing bullets to use the texture from resources .

 play_sound_once(&resources.sound_laser);

 if is_key_pressed(KeyCode::Space) {
 bullets.push(Shape {
 x: circle.x,
 y: circle.y - 24.0,
 speed: circle.speed * 2.0,
 size: 32.0,
 collided: false,
 });

 }

 texture:
Some(resources.explosion_texture.clone()),

play_sound_once(&resources.sound_explosion);

 explosions.push((
 Emitter::new(EmitterConfig {
 amount: square.size.round() as u32
* 4,

 ..particle_explosion()
 }),
 vec2(square.x, square.y),
));

109

Spaceship

The spaceship also needs to use the texture from resources .

Enemies

When the enemies are drawn, we need to add resources as well.

 &resources.bullet_texture,

 for bullet in &bullets {
 draw_texture_ex(

 bullet.x - bullet.size / 2.0,
 bullet.y - bullet.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(bullet.size,
bullet.size)),
 source: Some(bullet_frame.source_rect),
 ..Default::default()
 },
);
 }

 &resources.ship_texture,

 let ship_frame = ship_sprite.frame();
 draw_texture_ex(

 circle.x - ship_frame.dest_size.x,
 circle.y - ship_frame.dest_size.y,
 WHITE,
 DrawTextureParams {
 dest_size: Some(ship_frame.dest_size * 2.0),
 source: Some(ship_frame.source_rect),
 ..Default::default()
 },
);

110

That’s everything that needs to be changed this time. In this chapter we’ve created
a struct that contains all the loaded assets that we use when drawing textures and
playing sounds.

Instead of just exiting the game when encountering an error you could try to
display the error message on the screen using the draw_text() function of
Macroquad. Remember that the program will then need to keep on running
and do nothing but displaying the text.

 &resources.enemy_small_texture,

 for square in &squares {
 draw_texture_ex(

 square.x - square.size / 2.0,
 square.y - square.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(square.size,
square.size)),
 source: Some(enemy_frame.source_rect),
 ..Default::default()
 },
);
 }

Challenge

111

Try the game

The game should work exactly like before.

Sometimes the cargo dependencies can become out of sync. Some users have
experienced this in this chapter. The symptoms are that the buttons in the
main menu starts to “glitch” and it requires multiple clicks to press the buttons.
A workaround for this issue is to rebuild all the dependencies using cargo
clean .

Info

112

Coroutines and Storage
When there are a lot of assets to load, it might take a while to load everything. This
is especially true for the WebAssembly version that loads files via HTTP in the
browser on a slow internet connection. In these cases we want to display a loading
message on the screen instead of just having a completely black screen.

To solve this we will use something called coroutines , which will emulate
multitasking using the event loop in the browser. For the desktop these will
execute immediately instead. This can be used to handle state machines and
things that need to be evaluated over time. Using a coroutine we can load all the
resources in the background while also drawing to the screen.

Finally we will place the resources in the Macroquad storage that is a global
persistent storage. It can be used to save game configuration that needs to be
available anywhere in the game code without having to send the data around.

Both coroutines and storage are experimental features of Macroquad and
the usage might change in future versions.

Implementation

Importing

Let’s start by importing coroutines::start_coroutine and
collections::storage from Macroquad’s experimental namespace.

Info

113

Create a new load method

Now we can create a load() method in the implementation block for the
Resources struct. In this method we’ll add the code that loads the assets using a

coroutine and display a text message on the screen showing that resources are
being loaded.

The function start_coroutine takes an async block and returns a Coroutine .
Inside the async block we will instantiate the Resources struct that loads all the
assets. After that we use the storage::store() to save the resources in the
Macroquad storage. This will ensure that we can access the resources anywhere in
the code.

Using the method is_done() on Coroutine we can check if the couroutune has
finished running or not. We add a loop that runs until is_done() returns true .
While the coroutine is running we use draw_text() to display a message on the
screen. We also add 1 to 3 periods after the text using the code
".".repeat(((get_time() * 2.) as usize) % 4) . We also need to use
clear_background() and next_frame.await inside the loop for everything to

work properly.

use macroquad::experimental::collections::storage;
use macroquad::experimental::coroutines::start_coroutine;

114

More information about the Macroquad coroutines and storage can be found
in the Macroquad documentation.

Loading assets

The call to loading resources needs to be updated to use the new load() method
instead of using new() directly. Since load() stores the resources in the
Macroquad storage we will use storage::get::<Resources>() to retrieve the
resources.

 pub async fn load() -> Result<(), macroquad::Error> {
 let resources_loading = start_coroutine(async move {
 let resources = Resources::new().await.unwrap();
 storage::store(resources);
 });

 while !resources_loading.is_done() {
 clear_background(BLACK);
 let text = format!(
 "Loading resources {}",
 ".".repeat(((get_time() * 2.) as usize) % 4)
);
 draw_text(
 &text,
 screen_width() / 2. - 160.,
 screen_height() / 2.,
 40.,
 WHITE,
);
 next_frame().await;
 }

 Ok(())
 }

Info

115

https://docs.rs/macroquad/latest/macroquad/experimental/coroutines/index.html
https://docs.rs/macroquad/latest/macroquad/experimental/collections/storage/index.html

Try the game

While the game is loading in a browser, the message “Loading resources…” will be
shown on the screen.

Make a loading spinner by including an image as bytes and draw it using the
rotation field in DrawTextureParams in the load() function instead of

displaying text.

 Resources::load().await?;
 let resources = storage::get::<Resources>();

 set_pc_assets_folder("assets");

Challenge

116

Release your game
Now that you have made a complete game, you need to release it so that others
can play it. In the following chapters are instructions on how to build your game for
different platforms.

We’ll start by looking at how to build and package the game for the most common
desktop platforms: Windows, MacOS, and Linux. After that is a chapter on building
the game to run on a web page. We will also look at how to build and package the
game for mobile platforms such as Android and iPhone.

117

Build your game for desktop platforms
Macroquad supports multiple desktop platforms, such as Windows, MacOS, and
Linux. It’s possible to cross compile for other platforms than the one you are using.
But it might need other tools that won’t be described in this guide. It’s easiest to
use a build system that has support for different platforms.

Build for Windows

If you want to build your game to be run on Windows you need to install a Rust
build target. Both the MSVC and GNU build targets are supported.

Build using Windows GNU target

Before running the build the first time you need to install the build target. You will
only have to run this command once.

To build the game, use the following command:

The binary file created will be stored in the directory target/x86_64-pc-windows-
gnu/release/ .

Build using Windows MSVC target

Before running the build the first time you need to install the build target. You will
only have to run this command once.

rustup target add x86_64-pc-windows-gnu

cargo build --release --target x86_64-pc-windows-gnu

118

To build the game, use the following command:

The binary file created will be stored in the directory target/x86_64-pc-windows-
msvc/release/ .

Build for Linux

To build your game with Macroquad on Linux you will need a couple of
development packages. Below are a few instructions how to install these packages
on some common Linux distributions.

Install packages

Ubuntu

These system packages must be installed to build on Ubuntu.

Fedora

These system packages must be installed to build on Fedora.

rustup target add x86_64-pc-windows-msvc

cargo build --release --target x86_64-pc-windows-msvc

apt install pkg-config libx11-dev libxi-dev libgl1-mesa-dev libasound2-
dev

dnf install libX11-devel libXi-devel mesa-libGL-devel alsa-lib-devel

119

Arch Linux

These system packages must be installed to build on Arch Linux.

Build using Linux GNU target

Before running the build the first time you need to install the build target. You will
only have to run this command once.

To build the game, use the following command:

The binary file created will be stored in the directory target/x86_64-unknown-
linux-gnu/release/ .

Build using MacOS

To build on MacOS there are two possible targets, x86_64-apple-darwin is used
for older Intel based Mac computers and aarch64-apple-darwin build for newer
Apple Silicon based Mac computers.

Build using x86-64 Apple Darwin target

Before running the build the first time you need to install the build target. You will
only have to run this command once.

pacman -S pkg-config libx11 libxi mesa-libgl alsa-lib

rustup target add x86_64-unknown-linux-gnu

cargo build --release --target x86_64-unknown-linux-gnu

120

To build the game, use the following command:

The binary file created will be stored in the directory target/x86_64-apple-
darwin/release/ .

Build using aarch64 Apple Darwin target

Before running the build the first time you need to install the build target. You will
only have to run this command once.

To build the game, use the following command:

The binary file created will be stored in the directory target/aarch64-apple-
darwin/release/ .

Package the game

To share your game with others you need to package the game binary file together
with all the assets needed to run the game. Here are a couple of examples on how
to do this using a terminal.

rustup target add x86_64-apple-darwin

cargo build --release --target x86_64-apple-darwin

rustup target add aarch64-apple-darwin

cargo build --release --target aarch64-apple-darwin

121

Windows

Linux

Mac

cp target/x86_64-pc-windows-gnu/release/my-game.exe ./
tar -c -a -f my-game-win.zip my-game.exe assets/*

cp target/x86_64-pc-linux-gnu/release/my-game ./
tar -zcf my-game-linux.zip my-game assets/*

cp target/aarch64-apple-darwin/release/my-game ./
zip -r my-game-mac.zip my-game assets/*

122

Publish your game on the web
Since you can compile a Macroquad game to WebAssembly it’s possible to run the
game in a web browser. These are instructions on how to create a web page to run
your game. This web page can be published on a web account so that people can
play your game directly in the browser without having to download anything.

Install WASM build target

Start by installing the build target for WebAssembly using the command rustup .

Build a WebAssembly binary

Using the WebAssembly target you can build a WASM binary file that can be loaded
from a web page.

The WASM binary file will be placed in the directory target/wasm32-unknown-
unknown/release/ with the extension .wasm .

Copy WebAssembly binary

You need to copy the WebAssembly binary to the root of your crate, in the same
place that the assets directory is placed.

rustup target add wasm32-unknown-unknown

cargo build --release --target wasm32-unknown-unknown

123

If you have named your crate something else than my-game the name of the
binary will have the same name, but with the file extension .wasm .

Create an HTML page

You will need an HTML page to load the WebAssembly binary. It needs to load a
javascript file from Macroquad which contains code to run the WebAssembly
binary and communicate with the browser. You also need to add a canvas element
that Macroquad will use to draw the graphics. Remember to change the name of
the WebAssembly binary file in the load() call from my-game.wasm to the name of
your game if you have changed it.

Create a file with the name index.html in the root of your crate with the following
content:

cp target/wasm32-unknown-unknown/release/my-game.wasm .

124

Test the game in a browser

You should be able to start a web server and open the page in a web browser.

Install a simple web server

To serve your game locally on your computer you can install a simple web server
with the following command. This is only to be able to test the game locally before

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>My Game</title>
 <style>
 html,
 body,
 canvas {
 margin: 0;
 padding: 0;
 width: 100%;
 height: 100%;
 overflow: hidden;
 position: absolute;
 background: black;
 z-index: 0;
 }
 </style>
</head>
<body>
 <canvas id="glcanvas" tabindex='1'></canvas>
 <!-- Minified and statically hosted version of
https://github.com/not-fl3/macroquad/blob/master/js/mq_js_bundle.js -->
 <script src="https://not-fl3.github.io/miniquad-
samples/mq_js_bundle.js"></script>
 <script>load("my-game.wasm");</script> <!-- Your compile WASM
binary -->
</body>
</html>

125

you upload it to a proper web hosting account.

Run the web server

This command will start the web server and print an address where you can reach
the web page. Open your web browser and load the URL, this will be something
similar to http://localhost:4000 . The game should now run in your browser
instead of as a native application.

Publish your game

If you have access to a web hosting account you can publish the files there to let
other people play your game. You need to upload the HTML file, the WASM file,
and the assets directory.

This is a reminder that there are instructions at the end of chapter 1 with
instructions on how to automatically publish the game on GitHub without using
a web account. In that case you need to use the updated deploy.yml from
chapter 10 – Graphics.

cargo install basic-http-server

basic-http-server .

index.html
my-game.wasm
assets/*

Note

126

file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch1-first-program.html#publish-on-the-web-if-you-want
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch11-graphics.html#update-web-publishing

Build for Android phones
Using Macroquad it’s possible to build your game to be run on Android phones. We
will build an APK file that can be installed on Android phones or added to the
Google Play store. We’ll describe how to build the game using Docker, so you need
to have that installed to continue.

Since mobile platforms don’t have physical keyboards you will also have to add
support for controlling the game using touch controls.

Read about the function touches() in the Macroquad documentation for
more information on how touch controls work.

Install the docker image

Before you build an APK file for Android you need to pull the Docker image
notfl3/cargo-apk .

Build APK file

Using this command you can build an APK file. It will take quite some time since it
will do three full builds, once for each Android target.

Note

docker pull notfl3/cargo-apk

127

https://docs.rs/macroquad/latest/macroquad/input/index.html

After this you will have an APK file in the directory target/android-
artifacts/release/apk .

Configuration

To ensure that Android can find all the assets you need to add some configuration
to the Cargo.toml file to define where the assets can be found.

On the Macroquad homepage there is a more detailed instruction on how to
build for Android. It has tips on how to speed up the build, how to build
manually without Docker and how to sign the APK file which is needed to
upload it to the Google Play Store.

docker run
 --rm
 -v $(pwd):/root/src
 -w /root/src
 notfl3/cargo-apk cargo quad-apk build --release

[package.metadata.android]
assets = "assets/"

Info

128

https://macroquad.rs/articles/android/

Build for iOS
You can build your Macroquad game to run on iPhone mobile phones and iPads.

More detailed information on how to build for iOS is available in the article
Macroquad on iOS on the Macroquad homepage. There you can find
information on how to access logs, building for real devices and signing your
app.

Create a directory

An iOS app is a regular directory with the file extension .app .

For our game the directory structure in the MyGame.app directory is the same as
when we run the game with cargo run from the root of the crate. The binary file
and assets directory should be placed nexxt to each other. You also need a
Info.plist file.

Start by adding the asstes .

Info

mkdir MyGame.app

cp -r assets MyGame.app

129

https://macroquad.rs/articles/ios/

Build the binary

You need to add the Rust target for iOS. For the simulator you should use Intel
binaries and for the real devices you should use ARM binaries. We’ll only cover how
to try the game in the simulator in this guide. To try the game on a real device is
covered in the Macroquad on iOS article on the Macroquad homepage.

After this you can build an executable binary for the iOS Simulator using the
following command:

Copy the binary file

Copy the executable binary file to the game directory.

Create Info.plist

Create a text file for the app metadata with the name Info.plist in the
MyGame.app directory with the following content:

rustup target add x86_64-apple-ios

cargo build --release --target x86_64-apple-ios

cp target/x86_64-apple-ios/release/my-game MyGame.app

130

https://macroquad.rs/articles/ios/

Setup the simulator

For this step you need to have XCode and at least one simulator image installed.
You’ll find XCode in the App Store app. You can add simulators via the command
line or via XCode. In version 15.1 of XCode you can do it via Settings… ->
Platforms and then choose between the available iOS versions. There is also a
button (+) to add more iOS versions.

To add simulators via the command line you first need to run the command xcrun
simctl list to get a list of all the available simulators. Copy the hex code for the
simulator you want and use it as argument to the xcrun simctl boot command.
You only need to do this the first time you run the simulator.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleExecutable</key>
<string>my-game</string>
<key>CFBundleIdentifier</key>
<string>com.mygame</string>
<key>CFBundleName</key>
<string>mygame</string>
<key>CFBundleVersion</key>
<string>1</string>
<key>CFBundleShortVersionString</key>
<string>1.0</string>
</dict>
</plist>

xcrun simctl list
xcrun simctl boot <hex string>

131

Run the simulator

The command we’ll use to install and run the game, xcrun simctl , chooses a
simulator with the argument booted . This means that you first need to start a
simulator, and to make things predictable you should only run one simulator at a
time. This can also be done using the terminal, but the easiest way is to start the
Simulator app and then start the simulator you want via File -> Open Simulator.

To start the simulator using the terminal, use the following command:

Install the game

You can install the game by dragging the directory MyGame.app and drop it on the
running simulator. But since you probably want to reinstall it multiple times it is
more efficient to use the terminal with this command:

Start the game

This can be done using the running simulator or via the terjinal. In our Info.plist
file we specified CFBundleIdentifier as com.mygame , which we will use to start
the game.

open
/Applications/Xcode.app/Contents/Developer/Applications/Simulator.app/

xcrun simctl install booted MyGame.app/

xcrun simctl launch booted com.mygame

132

You’ll notice that the game isn’t adapted to be run on a mobile platform yet. To
start with you can read about the function touches() in the Macroquad
documentation for more information about how touch interfaces work.

Note

133

https://docs.rs/macroquad/latest/macroquad/input/index.html
https://docs.rs/macroquad/latest/macroquad/input/index.html

The end

You have now developed and published a simple game written in the
programming language Rust and the game library Macroquad. However there is
still a lot to be done to make it into a complete game, but you should now have a
solid foundation to make the game into your own.

Improvement ideas

Here are some ideas on how to improve the game to make it more fun to play:

Add more enemies with different movements and graphics.
Add life to enemies so bigger enemies needs to shot multiple times before
they are destroyed.
Allow enemies to shoot bullets or drop bombs themselves.
Make enemies show up in waves instead of just randomly.
Add levels with increasing difficulty.
Upgrades that improve the weapon or add different types of weapons.
Add big boss enemies at the end of levels.
Extra lives.
Add health and display a health bar.
Add an upgrade with shield around the spaceship.

134

Store the top ten scores and add a highscore screen.
Use macroquad-tiled to make a level with graphical background.
Add a shop between levels to buy upgrades.
Make the spaceship invulnerable and blinking for a short while after
resurrection.
Look at the Macroquad post processing example on how to add a CRT
shader.
Use the font from the graphical menu chapter for all texts in the game.
Show a victory sequence at the end of each level.
Support two simultaneous players.

Other resources

These are some other resources about the Macroquad game library.

Macroquad – The official homepage of Macroquad.
Awesome Quads – A curated list of Macroquad games and resources.
Quads discord server – The official Macroquad community.
Rust game ports – Official host of games ported using Rust game libraries.

Game showcase

If you have completed this game guide and published your game online you can
have your game showcased on this page. You can open a PR in the GitHub
repository and add a link to your game in the list below.

My first Macroquad game by Pez

135

https://github.com/not-fl3/macroquad/tree/master/tiled
https://github.com/not-fl3/macroquad/blob/master/examples/post_processing.rs
file:///Users/olle/Development/mine/macroquad-introduction/macroquad-introduction-book-english/book/html/ch13-menu-ui.html
https://macroquad.rs/
https://github.com/ozkriff/awesome-quads
https://discord.gg/WfEp6ut
https://github.com/rust-gamedev/rust-game-ports
https://github.com/ollej/macroquad-introduktion/blob/main/macroquad-introduction-book-english/src/wrapup.md
https://pez.github.io/my-first-macroquad-game/
https://www.github.com/pez

Full source code
This is the full source code of the completed game.

use macroquad::audio::{Sound, load_sound, play_sound, play_sound_once,
PlaySoundParams};
use macroquad::experimental::animation::{AnimatedSprite, Animation};
use macroquad::experimental::collections::storage;
use macroquad::experimental::coroutines::start_coroutine;
use macroquad::prelude::*;
use macroquad::ui::{hash, root_ui, Skin};
use macroquad_particles::{self as particles, AtlasConfig, Emitter,
EmitterConfig};

use std::fs;

const FRAGMENT_SHADER: &str = include_str!("starfield-shader.glsl");

const VERTEX_SHADER: &str = "#version 100
attribute vec3 position;
attribute vec2 texcoord;
attribute vec4 color0;
varying float iTime;

uniform mat4 Model;
uniform mat4 Projection;
uniform vec4 _Time;

void main() {
 gl_Position = Projection * Model * vec4(position, 1);
 iTime = _Time.x;
}
";

struct Shape {
 size: f32,
 speed: f32,
 x: f32,
 y: f32,
 collided: bool,
}

136

impl Shape {
 fn collides_with(&self, other: &Self) -> bool {
 self.rect().overlaps(&other.rect())
 }

 fn rect(&self) -> Rect {
 Rect {
 x: self.x - self.size / 2.0,
 y: self.y - self.size / 2.0,
 w: self.size,
 h: self.size,
 }
 }
}

enum GameState {
 MainMenu,
 Playing,
 Paused,
 GameOver,
}

fn particle_explosion() -> particles::EmitterConfig {
 particles::EmitterConfig {
 local_coords: false,
 one_shot: true,
 emitting: true,
 lifetime: 0.6,
 lifetime_randomness: 0.3,
 explosiveness: 0.65,
 initial_direction_spread: 2.0 * std::f32::consts::PI,
 initial_velocity: 400.0,
 initial_velocity_randomness: 0.8,
 size: 16.0,
 size_randomness: 0.3,
 atlas: Some(AtlasConfig::new(5, 1, 0..)),
 ..Default::default()
 }
}

struct Resources {
 ship_texture: Texture2D,
 bullet_texture: Texture2D,
 explosion_texture: Texture2D,
 enemy_small_texture: Texture2D,
 theme_music: Sound,

137

 sound_explosion: Sound,
 sound_laser: Sound,
 ui_skin: Skin,
}

impl Resources {
 async fn new() -> Result<Resources, macroquad::Error> {
 let ship_texture: Texture2D = load_texture("ship.png").await?;
 ship_texture.set_filter(FilterMode::Nearest);
 let bullet_texture: Texture2D = load_texture("laser-
bolts.png").await?;
 bullet_texture.set_filter(FilterMode::Nearest);
 let explosion_texture: Texture2D =
load_texture("explosion.png").await?;
 explosion_texture.set_filter(FilterMode::Nearest);
 let enemy_small_texture: Texture2D = load_texture("enemy-
small.png").await?;
 enemy_small_texture.set_filter(FilterMode::Nearest);
 build_textures_atlas();

 let theme_music = load_sound("8bit-spaceshooter.ogg").await?;
 let sound_explosion = load_sound("explosion.wav").await?;
 let sound_laser = load_sound("laser.wav").await?;

 let window_background =
load_image("window_background.png").await?;
 let button_background =
load_image("button_background.png").await?;
 let button_clicked_background =
load_image("button_clicked_background.png").await?;
 let font = load_file("atari_games.ttf").await?;

 let window_style = root_ui()
 .style_builder()
 .background(window_background.clone())
 .background_margin(RectOffset::new(32.0, 76.0, 44.0, 20.0))
 .margin(RectOffset::new(0.0, -40.0, 0.0, 0.0))
 .build();
 let button_style = root_ui()
 .style_builder()
 .background(button_background.clone())
 .background_clicked(button_clicked_background.clone())
 .background_margin(RectOffset::new(16.0, 16.0, 16.0, 16.0))
 .margin(RectOffset::new(16.0, 0.0, -8.0, -8.0))
 .font(&font)?
 .text_color(WHITE)

138

 .font_size(64)
 .build();
 let label_style = root_ui()
 .style_builder()
 .font(&font)?
 .text_color(WHITE)
 .font_size(28)
 .build();
 let ui_skin = Skin {
 window_style,
 button_style,
 label_style,
 ..root_ui().default_skin()
 };

 Ok(Resources {
 ship_texture,
 bullet_texture,
 explosion_texture,
 enemy_small_texture,
 theme_music,
 sound_explosion,
 sound_laser,
 ui_skin,
 })
 }

 pub async fn load() -> Result<(), macroquad::Error> {
 let resources_loading = start_coroutine(async move {
 let resources = Resources::new().await.unwrap();
 storage::store(resources);
 });

 while !resources_loading.is_done() {
 clear_background(BLACK);
 let text = format!(
 "Loading resources {}",
 ".".repeat(((get_time() * 2.) as usize) % 4)
);
 draw_text(
 &text,
 screen_width() / 2. - 160.,
 screen_height() / 2.,
 40.,
 WHITE,
);

139

 next_frame().await;
 }

 Ok(())
 }
}

#[macroquad::main("My game")]
async fn main() -> Result<(), macroquad::Error> {
 const MOVEMENT_SPEED: f32 = 200.0;

 rand::srand(miniquad::date::now() as u64);
 let mut squares = vec![];
 let mut bullets: Vec<Shape> = vec![];
 let mut circle = Shape {
 size: 32.0,
 speed: MOVEMENT_SPEED,
 x: screen_width() / 2.0,
 y: screen_height() / 2.0,
 collided: false,
 };
 let mut score: u32 = 0;
 let mut high_score: u32 = fs::read_to_string("highscore.dat")
 .map_or(Ok(0), |i| i.parse::<u32>())
 .unwrap_or(0);
 let mut game_state = GameState::MainMenu;

 let mut direction_modifier: f32 = 0.0;
 let render_target = render_target(320, 150);
 render_target.texture.set_filter(FilterMode::Nearest);
 let material = load_material(
 ShaderSource::Glsl {
 vertex: VERTEX_SHADER,
 fragment: FRAGMENT_SHADER,
 },
 MaterialParams {
 uniforms: vec![
 ("iResolution".to_owned(), UniformType::Float2),
 ("direction_modifier".to_owned(), UniformType::Float1),
],
 ..Default::default()
 },
)?;

 let mut explosions: Vec<(Emitter, Vec2)> = vec![];

140

 set_pc_assets_folder("assets");
 Resources::load().await?;
 let resources = storage::get::<Resources>();

 let mut bullet_sprite = AnimatedSprite::new(
 16,
 16,
 &[
 Animation {
 name: "bullet".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "bolt".to_string(),
 row: 1,
 frames: 2,
 fps: 12,
 },
],
 true,
);
 bullet_sprite.set_animation(1);
 let mut ship_sprite = AnimatedSprite::new(
 16,
 24,
 &[
 Animation {
 name: "idle".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "left".to_string(),
 row: 2,
 frames: 2,
 fps: 12,
 },
 Animation {
 name: "right".to_string(),
 row: 4,
 frames: 2,
 fps: 12,
 },

141

],
 true,
);
 let mut enemy_small_sprite = AnimatedSprite::new(
 17,
 16,
 &[Animation {
 name: "enemy_small".to_string(),
 row: 0,
 frames: 2,
 fps: 12,
 }],
 true,
);

 play_sound(
 &resources.theme_music,
 PlaySoundParams {
 looped: true,
 volume: 1.,
 },
);

 root_ui().push_skin(&resources.ui_skin);
 let window_size = vec2(370.0, 320.0);

 loop {
 clear_background(BLACK);

 material.set_uniform("iResolution", (screen_width(),
screen_height()));
 material.set_uniform("direction_modifier", direction_modifier);
 gl_use_material(&material);
 draw_texture_ex(
 &render_target.texture,
 0.,
 0.,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(screen_width(), screen_height())),
 ..Default::default()
 },
);
 gl_use_default_material();

 match game_state {

142

 GameState::MainMenu => {
 root_ui().window(
 hash!(),
 vec2(
 screen_width() / 2.0 - window_size.x / 2.0,
 screen_height() / 2.0 - window_size.y / 2.0,
),
 window_size,
 |ui| {
 ui.label(vec2(80.0, -34.0), "Main Menu");
 if ui.button(vec2(65.0, 25.0), "Play") {
 squares.clear();
 bullets.clear();
 explosions.clear();
 circle.x = screen_width() / 2.0;
 circle.y = screen_height() / 2.0;
 score = 0;
 game_state = GameState::Playing;
 }
 if ui.button(vec2(65.0, 125.0), "Quit") {
 std::process::exit(0);
 }
 },
);
 }
 GameState::Playing => {
 let delta_time = get_frame_time();
 ship_sprite.set_animation(0);
 if is_key_down(KeyCode::Right) {
 circle.x += MOVEMENT_SPEED * delta_time;
 direction_modifier += 0.05 * delta_time;
 ship_sprite.set_animation(2);
 }
 if is_key_down(KeyCode::Left) {
 circle.x -= MOVEMENT_SPEED * delta_time;
 direction_modifier -= 0.05 * delta_time;
 ship_sprite.set_animation(1);
 }
 if is_key_down(KeyCode::Down) {
 circle.y += MOVEMENT_SPEED * delta_time;
 }
 if is_key_down(KeyCode::Up) {
 circle.y -= MOVEMENT_SPEED * delta_time;
 }
 if is_key_pressed(KeyCode::Space) {
 bullets.push(Shape {

143

 x: circle.x,
 y: circle.y - 24.0,
 speed: circle.speed * 2.0,
 size: 32.0,
 collided: false,
 });
 play_sound_once(&resources.sound_laser);
 }
 if is_key_pressed(KeyCode::Escape) {
 game_state = GameState::Paused;
 }

 // Clamp X and Y to be within the screen
 circle.x = clamp(circle.x, 0.0, screen_width());
 circle.y = clamp(circle.y, 0.0, screen_height());

 // Generate a new square
 if rand::gen_range(0, 99) >= 95 {
 let size = rand::gen_range(16.0, 64.0);
 squares.push(Shape {
 size,
 speed: rand::gen_range(50.0, 150.0),
 x: rand::gen_range(size / 2.0, screen_width() -
size / 2.0),
 y: -size,
 collided: false,
 });
 }

 // Movement
 for square in &mut squares {
 square.y += square.speed * delta_time;
 }
 for bullet in &mut bullets {
 bullet.y -= bullet.speed * delta_time;
 }

 ship_sprite.update();
 bullet_sprite.update();
 enemy_small_sprite.update();

 // Remove shapes outside of screen
 squares.retain(|square| square.y < screen_height() +
square.size);
 bullets.retain(|bullet| bullet.y > 0.0 - bullet.size /
2.0);

144

 // Remove collided shapes
 squares.retain(|square| !square.collided);
 bullets.retain(|bullet| !bullet.collided);

 // Remove old explosions
 explosions.retain(|(explosion, _)|
explosion.config.emitting);

 // Check for collisions
 if squares.iter().any(|square|
circle.collides_with(square)) {
 if score == high_score {
 fs::write("highscore.dat",
high_score.to_string()).ok();
 }
 game_state = GameState::GameOver;
 }
 for square in squares.iter_mut() {
 for bullet in bullets.iter_mut() {
 if bullet.collides_with(square) {
 bullet.collided = true;
 square.collided = true;
 score += square.size.round() as u32;
 high_score = high_score.max(score);
 explosions.push((
 Emitter::new(EmitterConfig {
 amount: square.size.round() as u32
* 4,
 texture:
Some(resources.explosion_texture.clone()),
 ..particle_explosion()
 }),
 vec2(square.x, square.y),
));

play_sound_once(&resources.sound_explosion);
 }
 }
 }

 // Draw everything
 let bullet_frame = bullet_sprite.frame();
 for bullet in &bullets {
 draw_texture_ex(
 &resources.bullet_texture,

145

 bullet.x - bullet.size / 2.0,
 bullet.y - bullet.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(bullet.size,
bullet.size)),
 source: Some(bullet_frame.source_rect),
 ..Default::default()
 },
);
 }
 let ship_frame = ship_sprite.frame();
 draw_texture_ex(
 &resources.ship_texture,
 circle.x - ship_frame.dest_size.x,
 circle.y - ship_frame.dest_size.y,
 WHITE,
 DrawTextureParams {
 dest_size: Some(ship_frame.dest_size * 2.0),
 source: Some(ship_frame.source_rect),
 ..Default::default()
 },
);
 let enemy_frame = enemy_small_sprite.frame();
 for square in &squares {
 draw_texture_ex(
 &resources.enemy_small_texture,
 square.x - square.size / 2.0,
 square.y - square.size / 2.0,
 WHITE,
 DrawTextureParams {
 dest_size: Some(vec2(square.size,
square.size)),
 source: Some(enemy_frame.source_rect),
 ..Default::default()
 },
);
 }
 for (explosion, coords) in explosions.iter_mut() {
 explosion.draw(*coords);
 }
 draw_text(
 format!("Score: {}", score).as_str(),
 10.0,
 35.0,
 25.0,

146

 WHITE,
);
 let highscore_text = format!("High score: {}",
high_score);
 let text_dimensions =
measure_text(highscore_text.as_str(), None, 25, 1.0);
 draw_text(
 highscore_text.as_str(),
 screen_width() - text_dimensions.width - 10.0,
 35.0,
 25.0,
 WHITE,
);
 }
 GameState::Paused => {
 if is_key_pressed(KeyCode::Escape) {
 game_state = GameState::Playing;
 }
 let text = "Paused";
 let text_dimensions = measure_text(text, None, 50,
1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 WHITE,
);
 }
 GameState::GameOver => {
 if is_key_pressed(KeyCode::Space) {
 game_state = GameState::MainMenu;
 }
 let text = "GAME OVER!";
 let text_dimensions = measure_text(text, None, 50,
1.0);
 draw_text(
 text,
 screen_width() / 2.0 - text_dimensions.width / 2.0,
 screen_height() / 2.0,
 50.0,
 RED,
);
 }
 }

147

 next_frame().await
 }
}

148

Credits

Ferris the Gamer

The image of Ferris holding a game controller is based on the Ferris the Rustacean
image created by Karen Rustad Tölva. The game controller is drawn by
Clovis_Cheminot from Pixabay.

149

https://pixabay.com/vectors/controller-video-game-flat-x-box-1486898/

Ferris the Teacher

The image Ferris the Teacher is made by Esther Arzola.

Starfield shader

The starfield shader is created by The Art of Code and taken from the video Shader
Coding: Making a starfield.

Asset credits

Sprites

Space Ship Shooter Pixel Art Assets
Author: ansimuz
License: CC0 Public Domain
https://opengameart.org/content/space-ship-shooter-pixel-art-assets

150

https://www.behance.net/gallery/89117181/Ferris-the-professional
https://youtu.be/rvDo9LvfoVE
https://youtu.be/rvDo9LvfoVE
https://opengameart.org/content/space-ship-shooter-pixel-art-assets

Theme music

8-bit space shooter music
Author: HydroGene
License: CC0 Public Domain
https://opengameart.org/content/8-bit-epic-space-shooter-music

Laser and explosion sounds

Sci-fi sounds
Author: Kenney.nl
License: CC0 Public Domain
https://opengameart.org/content/sci-fi-sounds

UI

Sci-fi User Interface Elements
Author: Buch
License: CC0 Public Domain
sci-fi-ui.psd
https://opengameart.org/content/sci-fi-user-interface-elements

Font

AtariGames
Author: Kieran
License: Public Domain
https://nimblebeastscollective.itch.io/nb-pixel-font-bundle

151

https://opengameart.org/content/8-bit-epic-space-shooter-music
https://opengameart.org/content/sci-fi-sounds
https://opengameart.org/content/sci-fi-user-interface-elements
https://nimblebeastscollective.itch.io/nb-pixel-font-bundle

Glossary
This is a list of terms and abbreviations used in this guide.

Word Definition

enum A Rust feature, to enumerate its possible variants.

Vsync
Vertical sync ensures the monitor displays every frame the
GPU renders.

Struct A Rust custom data type, used to structure related values.

Rust A programming language.

Macroquad A game library to write games with Rust.

Miniquad A small Rust graphics library used by Macroquad.

shader

glsl

texture

PNG An image file format.

Ogg Vorbis A sound file format.

OGG The filename extension for Ogg Vorbis sound files.

MP3 A sound file format.

camera

152

https://www.agical.se/
https://www.agical.se/

